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Abstract
This thesis studies relational reasoning techniques for FRANK, a strict functional lan-

guage supporting algebraic effects and their handlers, within a general, formalised

approach for completely characterising observational equivalence.

Algebraic effects and handlers are an emerging paradigm for representing compu-

tational effects where primitive operations, which give rise to an effect, are primary,

and given semantics through their interpretation by effect handlers. FRANK is a novel

point in the design space because it recasts effect handling as part of a generalisation

of call-by-value function application. Furthermore, FRANK generalises unary effect

handlers to the n-ary notion of multihandlers, supporting more elegant expression of

certain handlers.

There have been recent efforts to develop sound reasoning principles, with respect

to observational equivalence, for languages supporting effects and handlers. Such

techniques support powerful equational reasoning about code, such as substitution of

equivalent sub-terms (‘equals for equals’) in larger programs. However, few stud-

ies have considered a complete characterisation of observational equivalence, and its

implications for reasoning techniques. Furthermore, there has been no account of rea-

soning principles for FRANK programs.

Our first contribution is a formal reconstruction of a general proof technique, tri-

angulation, for proving completeness results for observational equivalence. The tech-

nique brackets observational equivalence between two structural relations, a logical

and an applicative notion. We demonstrate the triangulation proof method for a pure

simply-typed λ-calculus. We show that such results are readily formalisable in an im-

plementation of type theory, specifically AGDA, using state-of-the-art technology for

dealing with syntaxes with binding.

Our second contribution is a calculus, ELLA, capturing the essence of FRANK’s

novel design. In particular, ELLA supports binary handlers and generalises function

application to incorporate effect handling. We extend our triangulation proof tech-

nique to this new setting, completely characterising observational equivalence for this

calculus. We report on our partial progress in formalising our extension to ELLA in

AGDA.

Our final contribution is the application of sound reasoning principles, inspired by

existing literature, to a variety of ELLA programs, including a proof of associativity

for a canonical pipe multihandler. Moreover, we show how leveraging completeness

leads, in certain instances, to simpler proofs of observational equivalence.
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Lay Summary

Computer programs are ubiquitous; from the ‘apps’ on our mobile phones, laptops,

or desktop computers, through to specialised software installed in cars, aeroplanes,

and satellites. Every program is designed and written with the intention of performing

a certain set of tasks. A task performed by a program may be so-called observable

by an end user, e.g. a web page displayed by a browser, or text typed into a word

processor. How can we be sure the program actually does the tasks for which it was

designed? The answer to such a question may be critically important for the end users

of certain software systems, as exemplified by recent advances in self-driving cars, for

example. This dissertation studies reasoning techniques for computer programs with

the emphasis on observable behaviour.

We develop a mathematical model, a precise and formal approximation, of a com-

puter programming language and the observable behaviour of its programs. Models

are only as good as their applicability; better models incorporate more of the features

present in real-world computer programs. Given the example software systems above,

the language is going to need to interact with its environment, recording or manip-

ulating data received from sensors, for example. Such interactions are collectively

known as computational effects, or effects for short, and are essential to the devel-

opment of nontrivial software systems. The correctness of software systems hinges

on ensuring effects are performed only where the programmer intended them. There-

fore, our model precisely specifies where such effects are permitted or prohibited. We

achieve such precision in specification by using so-called type-and-effect systems and

a mathematical theory of effects. A type-and-effect system classifies the elements of a

computer program as either effect-producing (a computation) or not (a value).

We develop reasoning techniques which take advantage of this distinction, and of

the effect specifications in our model. We study a fundamental reasoning technique:

program equivalence. That is, the situation where two programs can be said to ex-

hibit the same observable behaviour. Program equivalence allows correctness prop-

erties to be proven by comparing actual program execution on particular input data

with expected results. Additionally, we are able to apply optimisations, replacement

of sections of program code aimed at improving the program’s performance during

execution. Furthermore, we characterise program equivalence using simpler structural

notions, definable by virtue of our type-and-effect discipline. We demonstrate the util-

ity of our reasoning techniques on a number of examples expressed in our model.
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Chapter 1

Introduction

Type theory is concerned with developing mathematical models capable of describing

and establishing properties of programming languages. These models are typically

much simpler than the fully fledged programming languages used to build large soft-

ware systems. These simplified models are collectively known as typed λ-calculi, after

Church’s [1940] theory of types, which aim to capture the computational essence of

full languages.

However, many of the programming languages widely used today bear little resem-

blance to λ-calculus, incorporating object-oriented and imperative paradigms. Fortu-

nately, there is a class of languages which have a close connection to λ-calculus: pure

functional programming languages. These languages are functional in that they take

the concept of a mathematical function to be the primitive construct. These languages

are pure in the sense that such functions do not alter the environment (e.g. machine

state, or user terminal) during their execution, and always return the same result for the

same input. Therefore, reasoning principles developed for core typed λ-calculi transfer

to pure functional programs. In particular, pure functional programs admit equational

reasoning: the ability to substitute ‘equals for equals’ because purity guarantees a con-

sistent result.

Yet, restricting ourselves to pure programs comes at a cost. We are not permitted

to manipulate memory locations (persistent state between function calls), interact with

the user (via standard input/output streams), or communicate across a network con-

nection. Such phenomena are known as computational effects and are essential to the

development of nontrivial software systems. The correctness of these software systems

hinges on ensuring effects are performed only where the programmer intended them.

Most programming languages do not provide support for specifying where such effects

1



2 Chapter 1. Introduction

are permitted or prohibited. Furthermore, simply introducing effects into a pure lan-

guage as primitive constructs would interfere with its equational properties since the

same piece of code may exhibit different behaviour on successive executions.

One way to recover reasoning principles is to extend λ-calculus models to incor-

porate computational effects as a pure abstraction. Then, pure functional languages

based on these calculi are more expressive and we gain — via the models — the abil-

ity to reason about effectful programs. A key technique is to extend the type systems

of these languages to statically track the effects used in a program. Such type systems

are known as type-and-effect systems [Lucassen and Gifford, 1988].

This dissertation is concerned with establishing reasoning principles to prove prop-

erties of effectful functional programs for a language equipped with a particular type-

and-effect system. Furthermore, we desire strong correctness guarantees for our meta-

theoretic results. Before stating our main thesis, we briefly introduce the central topics

of the dissertation.

Algebraic Effects and Handlers

There is a growing interest in representing computational effects using the theory of

algebraic effects [Plotkin and Power, 2001, 2002]. This approach defines an effect as

the collection of primitive operations which give rise to it accompanied by a set of

equations governing the behaviour of the operations.

Why choose algebraic effects? One reason is the theory has a mathematically pleas-

ing semantics encapsulating both denotational and operational semantics. Briefly, de-

notational semantics gives meaning to a language model by assigning to each language

feature a mathematical object; the object is the denotation of the feature [Winskel,

1994, Chapter 5]. Operational semantics on the other hand gives meaning to a lan-

guage model by assigning to each language feature a computational meaning; that is,

how we expect programs to behave when executed by a computer. This dissertation

focuses exclusively on the latter but denotational semantics features prominently, both

in the original papers on algebraic effects, and in subsequent work by, for example,

Pretnar [2010], Kammar [2014] and Ahman [2017].

From a practical perspective, their popularity stems from the introduction of alge-

braic effect handlers by Plotkin and Pretnar [2013]. An effect handler for an algebraic

effect generalises the notion of an exception handler, providing an interpretation (a

computational meaning) for each source of the effect. This interpretation may or may
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not take account of the equations associated to a given algebraic effect. If it does not,

then the handler is said to be modelling the free theory of the effect. We do not impose

any equational theory on handler definitions in this dissertation. That said, our goal is

to develop sound reasoning principles which facilitate equational reasoning for effect-

ful programs. Being capable of validating the standard equations of an algebraic effect

for a given effect handler is a sensible litmus test for our techniques.

A number of functional languages have been developed which provide first-class

support for programming with algebraic effects and their handlers, including EFF [Bauer

and Pretnar, 2015], KOKA [Leijen, 2017], and LINKS [Hillerström and Lindley, 2016].

All of these languages are equipped with type-and-effect systems which track the ef-

fects occurring throughout programs. As regards reasoning principles for these lan-

guages, Bauer and Pretnar’s [2014] work on EFF is distinct. The reasoning principles

are developed with respect to a denotational semantics. None of the other languages

have so far been equipped with sound equational reasoning principles.

The FRANK programming language [Lindley et al., 2017] differs in several ways

to the above languages. The most noteworthy novelty being support for multihan-

dlers, an n-ary generalisation of the effect handlers presented by Plotkin and Pretnar.

So far there has not been any work on establishing reasoning techniques for FRANK

programs.

Observational Equivalence

Contextual or observational equivalence is one of the most fundamental reasoning

techniques since it supports powerful equational reasoning about code, such as rewrit-

ing via chains of equivalence proofs and the substitution of equivalent sub-terms (‘equals

for equals’) in larger programs. Roughly speaking, observational equivalence relates

programs, or terms, if they behave equivalently in any program context [Morris, 1968].

Fundamentally, a program context is some extension of the grammar of terms to in-

clude a placeholder for a term, called a hole, although the exact definition of ‘program

context’ and ‘behave equivalently’ varies depending on the features provided by the

language under study.

Sadly, quantification over all possible enclosing contexts can also make observa-

tional equivalence difficult to prove directly. However, if it can be captured by some

restricted form of contexts then the proof burden is reduced without sacrificing rea-

soning power. Such correspondence results are known as context lemmas, following
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Milner’s [1977] pioneering article, where he proved a context lemma for a typed com-

binatory logic with first-order function symbols, establishing that applicative contexts,

which apply the hole to a sequence of arguments, suffice to distinguish terms.

Since then there have been many similar results published for a variety of calculi,

spanning a range of programming-language models: from Milner’s original through

the CIU (Closed Instantiations of Uses) theorem [Mason and Talcott, 1991] to ‘CIU-

like’ results for multiple language features. Each showing that to prove observational

equivalence between terms it suffices to test only some restricted class of contexts. The

particular approach used to obtain the result varies, with many based on Howe’s coin-

ductive ‘precongruence candidate’ method [Howe, 1989, 1996]. In contrast, earlier

work for the ν-calculus [Stark, 1994] and ReFS [Pitts and Stark, 1998] used induc-

tive techniques to establish a context lemma. A key part of their argument involves

showing that a certain triangle of relations coincide. In this dissertation, we refer to

the argument as the triangulation proof method. Thus far, triangulation has not been

isolated for independent study as a general proof method for proving context lemmas.

Additionally, prior work leveraging the technique was not formally verified by a proof

assistant.

Formal Verification and Proof Assistants

Across mathematics, the vast majority of proofs are expressed with ‘pen and paper’

and verification of their correctness involves manually checking each stage of the proof

step-by-step. This strategy is also employed in type theory for developing and verifying

the metatheory of a language or calculus. Inevitably, this process is error-prone and

occasionally an incorrect proof passes these less-than-perfect checks.

To achieve greater confidence that our proofs are correct we could write a com-

puter program, a proof checker, to perform the verification phase for us. The task of

the programmer is then to provide an encoding or representation of the proof — a

proof object — which the program is capable of understanding. Now, we assume that

anything which passes the checker has been ‘formally verified’. For this assumption

to hold, we must trust the proof checker itself ; that is, we assume the implementation

of the proof checker contains no defects which would distort the results of its check-

ing procedure. For this reason, proof checkers are typically small pieces of software

on the order of a few thousand lines of code in order to reduce the trusted code base.

A proof assistant, in addition to checking the correctness of an encoded proof, aids
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the programmer in constructing the proof in the first place. In this case, the checker

is a small kernel of the whole system, isolated from any components not pertinent to

checking proof objects.

A large class of such systems build upon the Curry-Howard correspondence [Sørensen

and Urzyczyn, 2006] which describes a deep connection between typed λ-calculus and

logical systems 1 . Through this correspondence, types are identified with propositions,

and programs inhabiting a type correspond to proofs of the associated proposition.

Thus, the process of checking a proof object becomes the process of type checking a

program term.

This view of logic is constructive: to give a proof of a proposition exactly means to

give an algorithm for constructing an explicit proof object, i.e. a term. Only proposi-

tions which can be witnessed by a construction are accepted as provable in the system.

Martin-Löf’s [1984] intuitionistic type theory 2, based on the idea of ‘propositions-as-

types’, permits types to contain, or ‘depend on’, terms. A system with so-called depen-

dent types can specify logical properties of individuals (term variables) by quantifying

over them and mentioning them in the proposition (type). A number of dependent type

theories have since been developed, further extending the original ideas by Martin-

Löf, including the calculus of constructions [Coquand and Huet, 1988] and UTT [Luo,

1994] which form the backbone of the proof assistants COQ [Paulin-Mohring, 1993]

and AGDA [Norell, 2007], respectively.

Whereas COQ provides tactics to facilitate theorem proving, in AGDA proofs are

constructed by functional programming with dependent types leveraging extensions of

standard techniques, e.g. inductive families [Dybjer, 1994], dependent pattern match-

ing [Coquand, 1992], and with clauses [McBride and McKinna, 2004].

Inductive families are indexed collections of inductive datatypes generalising the

algebraic datatypes familiar to users of HASKELL, for example. Since types may con-

tain terms, the indexing may be a type or a term. A canonical example of indexing by

a term is the vector datatype, the type of lists indexed by their length (a term of type

N).

Pattern matching on a term of an inductive family may yield information regarding

the valid instances of its type’s indices. McBride and McKinna introduce the with

1The LCF tradition [Gordon et al., 1979] is another methodology, and forms the basis of the IS-
ABELLE/HOL proof assistant [Lawrence et al., 2019].

2The term “intuitionistic” is used interchangeably with the term “constructive”. The former is de-
rived from the logical intuitionism of L. E. J. Brouwer. For a historical and philosophical perspective
on intuitionistic mathematics see the article by Iemhoff [2019]. Sørensen and Urzyczyn [2006] provide
a more formal account making the connection with type theory explicit.
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construct which allows discrimination of intermediate computations to occur on the

left of a defining equation. By performing the discrimination on the left-hand side

instead of using a conventional case analysis on the right-hand side, the intermediate

computation is generalised over the arguments and the result type. AGDA’s interactive

mode directly supports refinement of goals by dependent case analysis and the with

construct.

There has been increasing interest in providing machine-checked proofs for the

meta-theoretic results of λ-calculus models. Besides gaining greater confidence in our

results, a mechanised development can also provide assistance in extending an existing

model to include new features by highlighting where the changes have affected proofs.

Using inductive families, it is possible to give such models intrinsic representations

which root out ill-formed terms. Examples of terms which could be eliminated ‘by

construction’ are ill-typed or ill-scoped terms. This approach is achieved by indexing

the meta-level description of terms, e.g. an inductive type, by their type and context.

The intrinsic approach is one particular strategy for object-language representation

particularly well-suited for developments using AGDA due to its aforementioned sup-

port for dependently typed programming. To our knowledge, AGDA has so far not

been applied to formalising results about observational equivalence.

1.1 Thesis Statement

In the previous section, we identified the following three gaps in the literature.

1. Reasoning techniques for FRANK programs;

2. Formalised treatment of triangulation as a general proof method for proving

context lemmas;

3. Applicability of AGDA for formalising observational equivalence results.

This dissertation contributes to addressing these gaps by considering their confluence

in the context of the following central thesis.

There are sound (in)equational reasoning principles applicable to monomorphic

FRANK programs which are amenable to formalisation in an implementation of type

theory such as AGDA.
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The aim of this dissertation is to contribute to the development of a complete char-

acterisation of observational equivalence for FRANK programs using the triangulation

proof method. We develop a simplified λ-calculus model, ELLA, based on a monomor-

phic version of FRANK which we argue captures the essence of the full language. We

conjecture there exists a translation of FRANK programs into monomorphic ELLA pro-

grams. This conjecture is justified by an existing translation of FRANK into a core

calculus with only unary handlers and case analysis [Lindley et al., 2017]. One way of

viewing ELLA is as the target of a type-annotated compilation phase.

We describe the progress we have made in formally verifying our results using

the AGDA programming language and proof development system. In particular, we

describe how we leverage an existing state-of-the-art framework for representing syn-

taxes with binding [Allais et al., 2017]. We describe how the formalisation has assisted

in scaling our results to richer calculi, informing us where our extensions have affected

the metatheory.

We divide our central thesis into the following subsidiary parts.

1. Triangulation extends to characterise observational equivalence for ELLA and

the constituent relations admit a collection of sound reasoning principles;

2. The reasoning principles for ELLA are capable of proving concrete ELLA pro-

gram approximations.

1.2 Contributions

The contributions of this dissertation are:

• An account of the FRANK programming language, motivating its design and

providing examples;

• A formal reconstruction in AGDA of the general triangulation proof method for

proving context lemmas;

• A strict functional language, ELLA, — modelled after FRANK— which repre-

sents effects using abstract operations and handlers, inspired by the algebraic

theory of effects and handlers [Plotkin and Power, 2001; Plotkin and Pretnar,

2013];
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• A complete syntactic characterisation of observational approximation and a col-

lection of sound reasoning principles for ELLA;

• Proofs of example ELLA approximations demonstrating the applicability of the

reasoning principles;

• We describe the progress we have made in verifying the results of this disserta-

tion using AGDA.

1.3 Dissertation Structure

Chapter 2 introduces the relevant background necessary to understand the technical

material presented in this dissertation. We assume as a prerequisite that the reader has

basic knowledge of functional programming and familiarity with either HASKELL or

ML.

Chapter 3 presents a tutorial on the Frank programming language, and an extended

example on using effects and handlers for fine-grained control of effects. We provide

points of comparison to other functional programming languages, and in particular

HASKELL and its use of monads as a pure abstraction for computational effects.

The triangulation proof method is presented in Chapter 4 for the fine-grained call-

by-value [Levy, 2004] calculus λ→FG. The intractability of proving contextual or ob-

servational equivalences directly is avoided by leveraging structural notions obtained

from the method. We choose to study λ→FG because of its simplicity, allowing us to

focus our exposition on the triangulation proof technique. The evaluation technique

of frame stacks [Pitts and Stark, 1998; Pitts, 2005] is also introduced which is later

extended to the ELLA setting.

Chapter 5 presents the FOLµ. logic for extending our triangulation result to a setting

with general recursion. The material in this chapter is heavily inspired by existing

logics [Dreyer et al., 2011] and structures [Di Gianantonio and Miculan, 2003] for

abstracting step indices used to facilitate recursive language features [Ahmed, 2006].

We discuss the relevant background for this chapter in situ, after having introduced

preliminary concepts in Chapter 4.

Chapter 6 presents the ELLA calculus, a monomorphic λ-calculus model of FRANK.

We present the semantics of ELLA in terms of handler stacks, a generalisation of the

frame stacks from Chapter 4. We extend triangulation to ELLA, proving a context
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lemma and deriving a collection of reasoning principles. This chapter substantiates

our first subsidiary thesis.

Chapter 7 presents some example ELLA program approximations, proving them

using the reasoning techniques. This chapter substantiates our second subsidiary the-

sis.

Chapter 8 concludes the dissertation and suggests directions for future work.





Chapter 2

Background

This chapter introduces essential background material to understand the technical de-

velopments in this dissertation. We focus our attention on the key topics which appear

throughout the dissertation, and merit a firm grounding.

We provide an introduction to the theory of algebraic effects and effect handlers

upon which our approach for representing computational effects is based. We highlight

the advantages of this representation decision compared to alternative choices.

We present the high-level methodology behind the triangulation proof method for

proving context lemma results, and the benefits it confers for reasoning about concrete

examples.

Lastly, we discuss formalising metatheory within an interactive theorem proving

environment, and the variety of representation choices available. We conclude the

discussion with a brief description of a meta-language for approximating our concrete

models in AGDA.

Auxiliary concepts are spread throughout the remaining chapters and introduced as

the need arises.

2.1 Algebraic Effects

Most programming languages permit the programmer to perform operations on the

state of the underlying machine and interact with the external world, e.g. printing out-

put to the screen or receiving input from the user. These behaviours, among others, are

collectively known as computational effects. Being able to reason about programs in-

volving computational effects is crucial if we are to have any confidence that programs

behave as the programmer intended.

11
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The seminal work by Moggi [1989a] provided a uniform denotational semantic

account of computational effects in λ-calculus. The key insight was to represent com-

putational effects, or notions of computations as Moggi called them, using monads. In

this view, pure values of type A are distinguished from computations, which may per-

form effects, of type T A, where T is the underlying functor of the monad representing

the effect(s). Many effects can be represented in this way including nontermination,

input and output, nondeterminism, state, exceptions and continuations. The monad

can be informally viewed as a transformer on ordinary pure values of a given type.

Moggi’s semantic account was given categorically by the Kleisli category CT with re-

spect to an ambient category C representing the domains for denotational semantics.

We give some example computational effects working in the ambient category Set of

sets and functions.

Example 2.1 (Notions of Computation). [Moggi, 1989a]

• Exceptions: T (A) = (A+E) where E is the set of exceptions;

• Nondeterminism: T (A) = P(A), the powerset of A;

• State: T (A) = S→ (A×S) where S is the set of states;

• Continuations: T (A) = (A→ R)→ R where R is the set of results.

This monadic discipline became particularly influential in the functional program-

ming community where monads have been adopted by HASKELL to mimic impurity

within a pure setting [Benton et al., 2002; Wadler, 1995].

Example 2.2 (HASKELL State Monad). Consider defining the monad for state in

HASKELL. Recall from our previous example, we represent stateful computations as

functions from a state S to a pair A×S consisting of the type A of values produced by

running the computation, and S the final state. In HASKELL, we can define a type to

express such a notion as follows.

newtype State s a = State { runState :: s -> (a,s) }

where State is defined as a type with one (eponymous) constructor which has a single

field, a function runState with a type signature matching the above description. Using

HASKELL typeclass instances [Marlow, 2010], we define State to be a monad as

follows.
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instance Monad (State s) where

return x = State $ \s -> (x,s)

m >>= k = State $ \s -> case runState m s of

(x,s') -> runState (k x) s'

To be a valid instance of the Monad typeclass, we must provide definitions for the two

operations return, which injects pure values into the monad, and bind, written >>=,

which composes monadic computations. In this case, we can see that return simply

pairs the value argument with the state provided. For bind, we run the first computa-

tion, producing a result value and a new state which are provided to the continuation

k. Of course, for State s to be a monad in the categorical sense, the return and >>=

definitions above must adhere to the standard monad laws [Mac Lane, 1971]. These

laws cannot be captured using HASKELL’s type system but are within the purview of

dependently typed systems [Agda, 2019b; Gross et al., 2014].

In this section we borrow from HASKELL parlance, using return v to denote the

injection of a pure value v into a computation.

Dissatisfied by the lack of an operational semantics for Moggi’s monadic approach,

Plotkin and Power [2001] embarked on describing a class of computational effects

known as algebraic effects. Informally, the idea is to take as primitive the sources of

a particular effect. The sources of an effect are the primitive operations which give

rise to it. The arguments supplied to an operation are the possible continuations of the

computation.

Roughly speaking, from a programming perspective, an operation is considered

algebraic if it commutes with evaluation contexts [Plotkin and Power, 2003], e.g. for

an operation op we must have,

E [op(x1, . . . ,xn)]≡ op(E [x1], . . . ,E [xn])

for all evaluation contexts E , where ≡ denotes program equivalence (see Section 2.3).

Algebraic effects include input and output, nondeterminism, state, exceptions, but

not continuations, as Plotkin and Power [2002] have shown they do not satisfy the

required conditions.

Plotkin and Power recognised that certain computational effects could be described

by algebraic theories. An algebraic theory consists of two components: a signature

and a collection of equations over the signature. An algebraic signature consists of

a collection of operation symbols each with an associated arity corresponding to the
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number of possible continuations for the operation. Equations of an algebraic theory

are between two computations built up from a context of variables and the operation

symbols from the signature.

In this dissertation we focus on free algebraic theories, that is we consider oper-

ations by themselves without any associated equations. This is the common choice

for languages supporting algebraic effects [Bauer and Pretnar, 2014; Hillerström and

Lindley, 2016; Leijen, 2017]. However, as mentioned in the introduction, we should

expect our reasoning principles to be able to validate the usual equations for particular

effect handlers. So, in this section, we present algebraic theories with the accompany-

ing equations. We use ‘=’ for equations which hold by virtue of the given algebraic

theory, reserving ‘≡’ for equivalence of terms which hold operationally.

Example 2.3 (Exceptions). The algebraic theory for exceptions consists of a signature

containing an operation throw. Since throwing an exception discards the rest of a

computation, the throw operation takes no arguments. There are no equations for this

theory.

Example 2.4 (Nondeterminism). The algebraic theory for nondeterminism consists of

a signature containing one binary operation, or, which nondeterministically chooses

between two alternative computations, M and N: or(M,N). The equations governing

nondeterminism are those of the theory of semilattices:

or(M,M) = M

or(M,N) = or(N,M)

or(L,or(M,N)) = or(or(L,M),N)

which at least agree with our computational intuition regarding nondeterminism.

We can view programs using algebraic effects as computation trees recording at

each node where an operation is invoked. The children of an operation represent the

possible results produced by the effect. At a minimum, this viewpoint only requires

knowledge of the algebraic signature of an effect. We can quotient the set of such trees

by identifying trees which satisfy the same equations.

Example 2.5. We may express or(L,or(M,N)) in the following tree form:
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or

L or

M N

and modulo the equations imposed by algebraic theory for nondeterminsim, the above

tree should be identified with:

or

or N

L M

In this way, the set of computation trees generated by the algebraic signature are quo-

tiented by the equations of the theory.

In order to evaluate such trees, we need to determine an appropriate semantics for

interpreting the operations occurring in the tree. How do we get from an algebraic the-

ory of an effect to a semantics for effectful programs? Plotkin and Power [2002] obtain

a semantics for a computational effect through its algebraic theory which induces the

corresponding computational monad originally studied by Moggi.

We may generalise the notion of algebraic operation given so far in two ways to

yield a representation more amenable for inclusion in a programming language [Plotkin

and Power, 2003].

First, we may have parameterised effects. For instance, in Example 2.3 we gave the

algebraic signature for a single exception. Instead, we could have given the signature

with respect to a set of exceptions E. We now have a choice as to how to construct the

operations of the signature. One approach is to have the signature consist of an opera-

tion throwe for each e ∈ E. Alternatively, we could add the parameter as an argument

to the operation itself. So that for each e ∈ E, throw e raises the e exception. We

adopt the latter approach in subsequent examples since it accords well with functional

programming practice.

Second, the operations we have seen thus far accept a sequence of arguments for

every possible continuation. This style would be quite unwieldy for programming.
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Instead, we may express operation invocations using continuation-passing style (CPS).

That is, an operation invocation takes the form

op v (λx.k)

where v is the argument value for any parameter the operation may have, and k repre-

sents the rest of the computation. The continuation, (λx.k), accepts the value returned

by the operation, if any. To be a bit more formal about the typing of operations, we

specify operations with their parameter type (P) and result type (R): op[P] : R. We

recast previous examples using this new style.

Example 2.6 (Exceptions). Exceptions discard the rest of the computation. To model

this behaviour, we use the empty type, zero, as the result type of the operation. This has

the consequence that the continuation can never be invoked because it expects an argu-

ment of an uninhabited type. Therefore, the operation for the theory is throw[E] : zero.

Example 2.7 (Nondeterminism). The binary operation for nondeterminism chooses

between two alternatives. The theory has no parameters. We thus get an operation

choose[unit] : bool with the induced equivalence:

choose () (λb.if b then M else N)≡ or(M,N).

Example 2.8 (State). The algebraic theory of state is a good example of a parame-

terised theory. The parameter set L specifies the collection of locations, which we

assume is finite. The arity of the operations is drawn from S, the range of possible

values storable at the locations. The theory has two operations:

lkp[L] : S upd[L×S] : unit

whose interactions are governed by the following equations:

lkp ` (λs.lkp ` (λs′.M s s′)) = lkp ` (λs.M s s) (1)

lkp ` (λs.upd (`,s) (λ().M)) = M (2)

upd (`,s) (λ().upd (`,s′) (λ().M)) = upd (`,s′) (λ().M) (3)

upd (`,s) (λ().lkp ` (λs′.M s′)) = upd (`,s) (λ().M s) (4)

for all ` ∈ L and s,s′ ∈ S, where M represents the rest of the computation tree. There

are three additional equations if we consider interactions involving different memory

locations, which we omit. For details, see e.g. Plotkin and Power [2002] or Pretnar

[2010].
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A final switch to more programmer friendly syntax is to consider the generic effect

arising from an algebraic operation [Plotkin and Power, 2003]. Given an operation op
invoked using CPS, the generic effect for op, written opg, has the trivial continuation:

opg v, op v (λx.return x)

In this dissertation, we usually specify (free) effect theories using the generic effect

presentation. The CPS variant can be obtained by using a standard sequencing con-

struct like let.

Example 2.9. The generic effect for nondeterminism is the operation, choice : bool.
The original algebraic operation can be simulated by the generic effect in combination

with conditional branching:

if choice then M else N ≡ or(M,N).

It is rare when a nontrivial program only utilises one effect at a time. A natural next

step is to look into how to combine effects. Subsequent to the development of mon-

ads for modelling individual effects, monad transformers were originally proposed by

Moggi [1989b] in order to combine multiple effects together within the same program.

These ideas were later extensively developed, beginning with Liang et al. [1995], as a

modular programming technique within the functional programming community.

In HASKELL, a monad transformer is realised as a stack of transformations built

on top of each other, heavily utilising the typeclass and class constraint facilities to

provide abstraction and modularity. A transformer accepts as a parameter a base monad

producing a monad whose operations include the base monad operations in addition to

those associated with the transformer.

Example 2.10. Consider the combination of state with some other computational ef-

fects expressed in HASKELL. The monad transformer for state is quite similar to the

State monad we defined in Example 2.2:

newtype StateT s m a = StateT { runStateT :: (s -> m (a, s)) }

where m is a monad. The definition augments the monad m with the ability to thread

state through the computation. We said a monad transformer produces a monad and

indeed that is the case here; when m is a monad, StateT s m is also a monad:

instance Monad m => Monad (StateT s m) where

return v = StateT (\s -> return (v, s))
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m >>= k = StateT (\s -> do (x, s') <- runStateT m s

runStateT (k x) s')

where we have used HASKELL’s do-notation to evaluate the monadic computation

produced by runStateT.

Unfortunately, while monad transformers can abstractly describe effectful compu-

tations in a modular fashion, concrete instances suffer from the need to lift component

monads through the stack [Schrijvers et al., 2019]. To perform operations of the base

monad the programmer inserts lift operations to convert them to operations on the

transformer:

class (Monad m, Monad (t m)) => MonadTrans t m where

lift :: m a -> t m a

Algebraic theories admit natural combinations which account for monad trans-

formers for combining algebraic effects [Hyland et al., 2006]. Combinations may be

a straightforward sum of the operations and equations of the individual theories. Al-

ternatively, there may be additional equations governing the interaction between the

algebraic operations of the different theories, e.g. to enforce commutativity (the ten-

sor). In either case, the associated mathematical theory prescribes uniform liftings for

algebraic operations, improving on previous ad-hoc definitions of lifting in the litera-

ture and inspiring subsequent library implementations [Jaskelioff, 2009, 2011].

So far we have traced the development of a mathematical theory for algebraic ef-

fects and their operations. Again, the operations represent the sources that give rise

to the effect. One aspect we elided in our presentation of exceptions was the notion

of exception handling. It turns out that if we take the view of algebraic operations

being effect constructors, then effect handlers are the dual notion: effect deconstruc-

tors [Plotkin and Pretnar, 2013].

2.2 Effect Handlers

There is a general theory for handling algebraic effects due to Plotkin and Pretnar

[2013]. Mathematically it amounts to providing a model of the algebraic theory. That

is, an effect handler provides an interpretation of the operations, which are the sources

for the effect, such that the interpretation satisfies the equations of the theory. The
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idea behind effect handlers takes inspiration from Benton and Kennedy [2001], who

introduced a generalised exception handling construct:

try x⇐M in Nr unless (Ei⇒ Ni)i

where the entire computation evaluates to Nr except in case M throws any of the ex-

ceptions Ei in which case it evaluates to Ni. The key addition over ordinary exception

handlers is the continuation Nr which binds the result of evaluating M to x. If M throws

an exception, it does not return a value so therefore x is not bound in the Ni’s.

Plotkin and Pretnar [2013] further generalise the above construct to the handling

of arbitrary algebraic effects. If we consider the theory of exceptions, it consists of a

single operation throw[E] : zero which, if invoked, discards the rest of the computation

i.e. its continuation. In general, for an arbitrary algebraic effect this is not typical and

the continuation may contain further operation invocations, e.g. Example 2.5. Thus,

we arrive at the following notation for specifying a handler H:

H = {return x 7→ Nr;(opi xi ki 7→ Ni)i}

where we have given the operation clauses in continuation-passing style: the xi argu-

ment represents the parameter of the opi operation, whereas ki represents the continu-

ation. We assume the operations occurring in H are all distinct. For the time being, we

also assume H handles the operations of a single effect only.

Once we have a handler H, we may use it to handle effect operations invoked by a

computation M using the following handling construct:

handle M with H

Example 2.11 (Exceptions). The theory of exceptions is a special case of the general

handling mechanism above. We take the theory of Example 2.3 and assume given

computations Nr and Ne of the same type. Then, given a computation M, we may

handle any exceptions thrown in M by:

handle M with {return x 7→ Nr; throw () k 7→ Ne}

where k cannot be invoked by Ne because k expects an argument of the uninhabited

type, zero. The above handler trivially models (interprets) the theory of exceptions

since there are no equations to satisfy.

From the general definition of a handler H, we see that in the case M returns a

value, we get the same behaviour as the generalised exception handler of Benton and
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Kennedy. In the situation where M invokes some operation opi ∈ H, we find its cor-

responding replacement Ni. However, in the general case we must take account of the

continuation k. The continuation may contain further invocations of the operations

handled by H. The mathematically natural approach is to handle those operations with

H as well; these deep handlers are models of the algebraic theory, and the handle-with
construct corresponds to the homomorphism arising from the universal property of the

free model [Pretnar, 2010]. That is, for an operation op such that (op x k 7→ N) ∈ H,

the mathematical model validates the equation:

handle E [op v] with H ≡ N[v/x,(λy.handle E[y] with H)/k]

for all evaluation contexts E . Furthermore, H must satisfy the equations associated

with the theory which involve op.

In the above equation, we say that the handler is ‘reinvoked’ within the continua-

tion k, or ‘re-wraps’ over the rest of the computation. There is another class of handlers

where k is replaced by λy.E [y] without any re-wrapping of the handler. These handlers

are known as shallow handlers. The distinction between deep and shallow handlers is

due to Kammar et al. [2013]. Viewing a computation as a tree, deep handlers are un-

derstood as folds [Meijer et al., 1991] over the tree whereas shallow handlers represent

a single case split.

In this dissertation, we focus on shallow handlers since our aim is to characterise

FRANK’s multihandlers which are shallow, but our examples always wrap the continu-

ation in the original handler, simulating the behaviour of deep handlers. The (shallow)

multihandlers studied in this dissertation are capable of handling multiple computa-

tions at once and represent a distinct point in the design space. Hillerström and Lindley

[2018] show the simulation of unary shallow handlers by unary deep handlers, among

other results for shallow effect handlers, but do not study multihandlers.

2.3 The Triangulation Proof Method

The problem of determining equivalence between programs or program fragments

(terms) is well-studied and a variety of approaches have been developed [Gordon,

1994; Howe, 1989, 1996; Lassen, 1998a,b; Mason and Talcott, 1991; Pitts, 1997, 2005,

2011; Stark, 1994; Pitts and Stark, 1998]. Since Morris [1968], program equivalence

is usually defined in terms of a notion of contextual or observational equivalence. For

calculi with deterministic evaluation semantics, observational equivalence arises as the
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symmetrisation of the associated approximation preorder. A term is observationally

approximate to another if the first term behaviourally approximates the second term in

any program context.

There is some variation regarding the notions of ‘program context’ and ‘behave ap-

proximately’. For example, program contexts often involve some kind of free-variable

capture, and may be a restricted subset of the term grammar. Whereas, approxima-

tion may require both terms return equal values at ground type, or for languages with

nontermination, simply requiring the two terms equiterminate.

The quantification over program contexts from the language itself turns out to make

observational approximation robust — independent of the class of available observa-

tions — and self-regulating: a language with more elaborate features has a correspond-

ingly larger collection of testing contexts, e.g. Dreyer et al. [2012] exhibit how various

language features affect the discriminatory power of contexts.

However, as mentioned in Chapter 1, such quantification over all possible enclosing

contexts can also make observational equivalence difficult to prove directly. The moti-

vation behind establishing a context lemma, such as Milner’s [1977] original result, is

to reduce the class of contexts that need to be considered.

Following earlier proofs for the ν-calculus [Stark, 1994] and ReFS [Pitts and Stark,

1998], we isolate a key part of their argument for independent study: proving a con-

text lemma by showing that a certain triangle of relations coincide. We propose this

triangulation proof method as a general technique for proving context lemmas.

Observational

Logical Applicative

The triangle links three kinds of relation between terms:

Observational where terms are related by their behaviour in some class of contexts;

Applicative where function terms are related if they take identical arguments to re-

lated results;

Logical where function terms are related if they take related arguments to related

results.

While observational relations are defined by quantification over contexts, both ap-

plicative and logical relations are given by type structure. This structural character of
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these lower relations shapes the proofs along all three sides — in particular the im-

plication from logical to observational arises from the fundamental property of logical

relations.

The base of the triangle also shares out the distinctive properties of observational

relations for powerful reasoning: applicative approximation is easily shown to be tran-

sitive, and logical approximation a congruence.

Observational relations require some chosen class of contexts, and in fact we see

the triangle apex ramify into a chain of relations from behaviour in all contexts down

through more restricted collections, with each relation naturally implying the next as

the set of testing contexts becomes smaller. However, the triangulation result brackets

all these observational relations between logical on the left and applicative on the right,

proving that they collapse into each other. This collapse — that testing in all contexts

is the same as testing over some restricted class — is the content of the context lemma.

2.4 Mechanised Metatheory

We seek to formalise our results in a proof assistant to strength confidence in the cor-

rectness of our reasoning techniques, and also to open up the possibility of formally

verifying specific program approximation examples.

There is a growing interest in formalising the metatheory of programming lan-

guages, in part due to the proliferation of suitable tools including AGDA, COQ, IS-

ABELLE/HOL [Nipkow and Klein, 2014], IDRIS [Brady, 2013], and BELUGA [Pien-

tka, 2008, 2010]. Each system provides a meta-language in which to write programs

and prove theorems. As mentioned in Chapter 1, AGDA is based on Luo’s [1994] UTT,

and the Calculus of Inductive Constructions [Paulin-Mohring, 1993] is the basis of

the COQ proof assistant. In contrast, ISABELLE/HOL is based on higher-order logic

(not dependent type theory), and BELUGA is based on an extension of the Edinburgh

Logical Framework [Harper et al., 1993].

The object-language is the model we intend to formalise, e.g the simply-typed λ-

calculus. There are two approaches for embedding an object-language within a meta-

language, known as the shallow and deep embeddings.

A shallow embedding defines the object-language directly in terms of its semantics

using meta-language definitions. Shallow embeddings are amenable to extension by

simply defining new meta-language definitions for new language constructs. Further-

more, by virtue of their direct semantics it is often easier to compute with compound
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terms of a shallow embedding.

A deep embedding on the other hand is a representation of the object-language ab-

stract syntax using a meta-language data structure, e.g. algebraic datatypes, or more

generally, inductive families [Dybjer, 1994]. Deep embeddings are useful when mul-

tiple interpretations of the syntax are required, e.g. evaluation semantics, substitution,

pretty printer, etc. It is straightforward to operate over the syntax by traversal of the

defining data structure but computing with concrete terms is more involved because

the embedding cannot take advantage of meta-language constructs.

In this dissertation, we model our calculi using deep embeddings since our aim is to

prove meta-theoretic properties by traversal over syntax trees, rather than the provision

of a single semantic interpretation.

There are different styles of deep embedding depending on whether we choose to

define constructs by syntax or semantics. A key decision is how to represent variables.

A first-order representation provides a syntactic representation of variables, de Bruijn

[1972] indices being a widely used example. The de Bruijn encoding represents vari-

ables vark as numeric offsets k, generated by zero and successor, into an environment.

Example 2.12 (de Bruijn Encoding). The K combinator, λx.λy.x, is expressed in the

de Bruijn encoding as λ(λ(varsucc0)).

An alternative encoding is higher-order abstract syntax (HOAS) where λ-abstraction

in the object-language is represented by λ-abstraction in the meta-language; hence,

variables in the object-language are identified with variables in the meta-language.

Weak HOAS uses an auxiliary parameter to represent binders with another construc-

tor injecting the parameter into the type of terms. This weaker form is used in proof

assistants — e.g. COQ [Despeyroux et al., 1995] — whose inductive datatypes must

be strictly positive, and consequently no self-reference may occur in the domain of a

nested function type.

The final axis of variation we shall consider is between the intrinsic and extrinsic

approaches [Altenkirch and Reus, 1999; Reynolds, 2000]. In the extrinsic approach,

the term syntax of the object-language is first defined, then a separate definition carves

out the well-typed and well-scoped terms. Theorems regarding well-typed and-scoped

terms must carry around this additional predicate. In contrast, intrinsic specifications

augment the definition of the term syntax with the type and scoping information such

that only well-typed and-scoped terms can be constructed. Intrinsic encodings are

defined using inductive families.
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Example 2.13 (STLC as an Inductive Family). We adopt notation similar to McBride

and McKinna [2004] for presenting the encoding of the simply typed λ-calculus (λ→)

as an inductive family. The definition given here is with respect to a meta-language

which we introduce shortly. For now, assume Set is the type to which all user-defined

types belong.

Our λ→ calculus has booleans and arrow types.

data
Ty : Set

where
bool : Ty

A : Ty B : Ty

A→ B : Ty

Contexts (Cx) are just snoc lists of types formed by [] and :<. The above inductive

datatype captures the grammar for types.

We capture our de Bruijn variable representation in the following inductive family.

data
A : Ty Γ : Cx

Var A Γ : Set
where

zero : Var A (Γ :<A)

k : Var A Γ

succB k : Var A (Γ :<B)

where the subscript B represents an implicit Ty argument; we usually omit subscripts

for implicit arguments when clear from the context. The above inductive family does

not capture a mere grammar for variable occurrence. Rather, the extra expressivity of

inductive families captures judgements. We could have expressed the above inductive

family in a more traditional inference rule style as follows.

ZERO

0:(A ∈ Γ,A)

SUCC

k :(A ∈ Γ)

succk :(A ∈ Γ,B)

We are now in a position to define the syntax for λ→ terms intrinsically.

data
A : Ty Γ : Cx

Trm A Γ : Set
where

k : Var A Γ

var k : Trm A Γ tt : Trm bool Γ ff : Trm bool Γ

M : Trm B (Γ :<A)

λ M : Trm (A→ B) Γ

M : Trm (A→ B) Γ N : Trm A Γ

app M N : Trm B Γ
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which, just like Var, corresponds to a collection of inference rules:

var

k :(A ∈ Γ)

Γ ` vark : A

bool

Γ ` b : bool
(b = tt, ff)

λ

Γ,A `M : B

Γ ` λA M : A→ B

app

Γ `M : A→ B Γ ` N : A

Γ `M N : B

where our inference rule presentation denotes keywords, types, and defined constants

using boldface. Given this interpretation of inductive families as collections of in-

ference rules, in the rest of this dissertation we opt to give only the inference rule

presentation for judgements, focussing on the mathematics rather than its rendering in

a meta-language syntax.

Aydemir et al. [2005] proposed a set of challenges to motivate an exploration of

solutions to mechanising metatheory. As observed by Lee et al. [2012], solutions to

the challenge problems have to consider a number of recurrent aspects of formalisa-

tions including variable binding techniques, object-language representations, capture-

avoiding substitution and its standard properties e.g. commutation with weakening

and more general renamings of free variables. Benton et al. [2012] describe an intrin-

sic first-order development of a simply-typed λ-calculus and System F in COQ. They

demonstate an abstraction of substitutions and renamings into a general framework of

maps operating over the term syntax. Allais et al. [2017] follow suit by constructing

an AGDA framework — referred to as the ACMM framework — for generic traver-

sals over syntax which abstractly capture concrete instances such as substitution and

renaming, amongst many other examples. Allais et al. go further by generalising the

maps of Benton et al. to a notion of semantics supporting arbitrary thinnings of the

context under binders. More significantly, their framework provides for a generic defi-

nition of simulation where the result of two semantics may be related, a generalisation

of the fundamental theorem of logical relations proven by Benton et al. [2012] for a

set-theoretic denotational semantics. Yet more generality is achieved by a notion of

fusible semantics which generically proves relatedness between the composite of two

semantics, and a third. Through ACMM, standard properties of substitution and re-

naming, and combinations thereof can be proven once and for all. ACMM was further

extended by Allais et al. [2018] to operate over generic descriptions of syntaxes with

binding.
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(Terms) M,N,A,B ::= x |Πx : A .B | Seti

| Σx : A .B | proj1(M) | proj2(M) | 〈M,N〉A | 1 | >

Figure 2.1: The meta-language MLUTT.

For mechanising the results of this dissertation, we choose AGDA because of its

support for intrinsic terms, and the availability of the state-of-the-art ACMM frame-

work by Allais et al. [2017]. While we do not have machine-checked proofs for all

of our results, we report on the progress we have made towards this goal, and justify

our belief that our development should scale to the remaining results. The AGDA en-

coding of most of the mathematics in this dissertation is left implicit leveraging the

judgements as types principle as described in Example 2.13. Where we require to be

explicit, e.g. for justifying the adequacy of our representation(s), we seek recourse

from a meta-language, MLUTT, presented in Figure 2.1 which approximates the meta-

language provided by AGDA. In particular, we are explicit about our encoding of a

modal logic (Chapter 5) within which we formalise the results of Chapter 6. While

first-order logic is supported by AGDA (and hence MLUTT) by fiat, we require a more

sophisticated base logic within which to reason about our FRANK-inspired calculus

ELLA.

MLUTT is a Martin-Löf [1984] type theory with universes and inductive families;

essentially the predicative part of Luo’s [1994] UTT. The meta-language has depen-

dent function types (Π-types), a cumulative hierarchy of type universes (Seti, for

i = 0,1, . . .), dependent sum types (Σ-types), projection and pairing constructs, and

the unit type, 1, and its only constructor, >. Additionally, further base types (e.g. sum

types) can be introduced as necessary by defining them using inductive families.

We utilise the following simplified notation:

• A→ B for Πx : A .B if x /∈ B;

• A×B for Σx : A .B if x /∈ B;

• Set for Set0.

We do not give a semantics for MLUTT, appealing instead to our concrete AGDA

model. Additionally, we point to Goguen’s [1995] metatheoretic results for a more

elaborate calculus, featuring an impredicative hierarchy of propositions, proving type-

checking is decidable, and by Curry-Howard, so too is proof checking. For situations
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where our proofs or definitions rely on dependent pattern matching or other facilities

provided by AGDA but not explicitly defined for MLUTT, we refer to Norell’s [2007]

results for a similar meta-language.





Chapter 3

FRANK: A Language for Effectful

Functional Programming

In this chapter we introduce FRANK, a strict functional language supporting computa-

tional effects and effect handlers, which motivates our technical developments in sub-

sequent chapters, and influences the design of our effectful language ELLA introduced

in Chapter 6.

The design of FRANK is inspired by the theory of algebraic effects [Plotkin and

Power, 2001, 2002] and algebraic effect handlers [Plotkin and Pretnar, 2013]. There

are several novel design features of FRANK, including its effect type system and ap-

proach to effect polymorphism. Perhaps the most significant departure from existing

languages and calculi in this area is FRANK’s approach to handling effects and defining

effect handlers.

This chapter is based on the publications:

• Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. In Pro-

ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages, POPL 2017, pp. 500–514, 2017. doi:10.1145/3093333.3009897;

• Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. Doo bee

doo bee doo. Journal of Functional Programming (special issue on algebraic

effects and handlers), 30:e9, 2020. doi:10.1017/S0956796820000039.

The journal article is an extended and updated account of FRANK. In comparison to

the POPL’17 publication, the journal version describes a small-step operational se-

mantics for the surface language, and extends the language with adaptors; FRANK’s

answer to the problem of effect pollution (see Section 3.11). I contributed the design
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and implementation of the initial FRANK compiler as described in the POPL’17 pub-

lication. I contributed to the formalisation of adapting effects presented in the journal

submission.

The majority of this chapter is an extended tutorial on programming in FRANK

which is based on the tutorials presented in the above publications. We highlight

FRANK’s support for smoothly integrating effectful and pure code, and its novel ap-

proach to defining and using effect handlers. Some examples given in this chapter

serve as case studies for the techniques to be introduced later in the dissertation.

In the latter part of this chapter, we present a larger example application not pre-

viously published elsewhere. We walkthrough the Frank implementation of type in-

ference for the Hindley-Milner type system. This implementation is based on Gundry

et al.’s [2010] ‘variables-in-context’ algorithm for uniformly solving type inference

and unification problems (see also [Gundry, 2013]). The goal is to demonstrate an

implementation of the algorithm using an effects and handlers approach in contrast to

Gundry’s monadic implementation.

The implementation of FRANK is available online at the following URL:

https://www.github.com/frank-lang/frank

3.1 Pure Functional Programming

FRANK supports standard pure functional programming concepts such as functions

and algebraic (inductive) datatypes. We may define standard examples of inductive

datatypes as follows.

data Zero =

data Unit = unit

data Bool = tt | ff

data Nat = zero | suc Nat

data Maybe X = nothing | just X

data Pair X Y = pair X Y

data List X = nil | cons X (List X)

A datatype definition is introduced using the keyword data followed by the name

for the type. Possible instances of the type — the data constructors — are separated by

‘|’. In the above snippet, we defined the datatype Bool with two constructors tt:Bool

https://www.github.com/frank-lang/frank
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and ff:Bool. In the case of the Zero type there are no constructors, denoting the

empty type. A datatype may take a list of type parameters which can appear in their

constructors, such as the Pair type which has one data constructor pair, containing

a value of type X as its first argument and a value of type Y as its second argument.

By convention, type constructors are given uppercase initials, as are their parameters,

whereas data constructors are lowercase initially. Both type and data constructors are

prefix. Datatypes may be recursive as demonstrated by the definition of List X where

the cons constructor takes a value of type List X as its second argument. Data con-

structors are not curried and must be fully applied (cf. Haskell [Marlow, 2010]).

In practice, while we may define such primitive datatypes directly, for convenience,

many of the above types are given built-in status. In particular, the type of lists is built-

in and supported by convenient syntactic sugar.

nil = [] cons x nil = [x] cons x xs = x :: xs

The remaining built-in types are characters (Char), integers (Int), and strings (String)

— which are really List Char.

Besides top-level datatype declarations, FRANK supports defining top-level func-

tions. Consider defining an append function for Lists. First, we declare its type

signature:

append : {List X -> List X -> List X}

Ignoring the braces (‘{}’) for the moment, the above type declares append to be a

function accepting two arguments, both lists containing elements of type X, returning

another list of the same type. The X occurring in the type signature is a (value) type

variable which is implicitly universally quantified over the entire signature. Using

‘->’ between arguments may be slightly misleading; like data constructors, FRANK

functions are not curried and must be fully applied.

Functions are defined using pattern matching clauses. We may define append by

pattern matching on the first argument as follows.

append [] ys = ys

append (x :: xs) ys = x :: (append xs ys)

Example 3.1 (Append Lists). We may apply append to any lists containing the same

element type. For example,

append [1,2] [3,4] =⇒ [1,2,3,4]

where we informally denote evaluation using =⇒.
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3.2 Doing and Being

In developing notions of computation, Moggi [1989a] made a distinction between pure

values and effectful computations. A value is an inert datum without any computational

character, e.g. the integer 5, whereas an effectful computation may alter or interact with

the external world during its evaluation. This distinction is exemplified in Levy’s call-

by-push-value (CBPV) calculus [Levy, 2004] which treats values and computations as

separate syntactic categories; hence Levy’s slogan, “a value is, a computation does.”

We briefly alluded to this distinction in Chapter 2, using return v to lift a value v to

a computation. Inspiration for FRANK is drawn from Levy’s CBPV in that we sepa-

rate value and computation types, and programming in FRANK amounts to alternating

between doing (performing) a computation and being (returning) a value.

The full form of a computation type in FRANK is quite complicated at first sight.

We elect to give the definition in stages. Here is the first candidate.

Definition 3.2 (Computation Type I). A computation type C is an arrow type

A1→ ·· · → An→ B

where the Ai’s represent argument value types, and the B represents a result value type.

The value types (ranged over by A,B) consist of value type variables (ranged over

by X), datatypes and suspended computation types. A suspended computation type

injects a computation type C into a value type denoted by {C}. Suspended computation

types are known as thunk types in CPBV, written U B, for computation type B.

In FRANK — as in CPBV — a value has a value type, a computation has a computa-

tion type, and variables bind only to values. Thus, we may bind variables to suspended

computations. When executing or applying a suspended computation we sometimes

say its evaluation has been forced, borrowing Levy’s terminology. Given a variable f

bound to a suspended computation, we write f! to force its evaluation. It corresponds

to force f in CPBV. Unless f is nullary we omit the ‘!’ as a syntactic convenience.

Example 3.3 (Append Type). The type ascribed to the append function above is a

suspended computation type {List X -> List X -> List X}. Wrapping a compu-

tation type within braces (‘{}’) injects it into a value type. The append variable is

bound to a suspended computation.

By allowing suspended computations as arguments, FRANK is capable of express-

ing standard higher-order functions such as map:
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map : {{X -> Y} -> List X -> List Y}

map f [] =

map f (x :: xs) = f x :: map f xs

with the usual operational meaning.

Example 3.4 (Adding One). We may use our newly defined higher-order map function

to add one to every integer in a list:

map {n -> n + 1} [1,2,3] =⇒ [2,3,4]

This example defines an anonymous suspended computation, {n -> n + 1}. In gen-

eral, anonymous suspended computations consist of a sequence of pattern matching

clauses separated by ‘|’, all enclosed within braces. A nullary computation is just

written within braces. Just like top-level definitions, fully applying them forces their

evaluation. In CPBV, the suspended computation could be written: thunk (λn.n+1).

3.3 Computational Effects

FRANK supports computational effects in a style inspired by the theory of algebraic

effects. In particular, effects are represented by the sources that give rise to them:

operation symbols with associated signatures.

The programmer may define their own effects using interfaces. An interface, akin

to an algebraic signature, is introduced using the keyword interface and consists of

the collection of operations corresponding to the sources of the effect being defined.

These operations, known as commands in FRANK, are given in their generic effect

form. In particular, a command c is given by c : A1→ ·· · → An → B, where the Ai’s

are the n argument value types and B is the result value type. Much like datatypes,

interfaces accept type parameters which may be referenced by the commands. Some

examples of interfaces are as follows.

Example 3.5 (Abort). Recall the theory of exceptions can be given by (assuming a

single exception) the generic effect operation throw[unit] : zero. In FRANK, this effect

is defined by:

interface Abort = raise : Zero

where Abort is the name of the effect consisting of a single nullary operation raise

which returns a value of type Zero when invoked.
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Example 3.6 (State). We model the global state signature presented in Example 2.8.

For simplicity, assume we are dealing with only one state cell (so L has cardinality 1).

Thus, the operations are:

lkp[unit] : S upd[S] : unit

which can be modelled in FRANK by:

interface State S = get : S

| put : S -> Unit

The State interface has two commands, get and put, for manipulating a single state

cell of type S. The put command expects an argument of type S and returns a value of

type Unit. The get command is nullary and returns a value of type S. When multiple

commands make up the signature of an effect, they are separated by ‘|’.

Example 3.7 (Granularity of Effects). It is possible to divide the above State effect

into two separate interfaces: a sender and a receiver.

interface Send S = send : S -> Unit

interface Recv S = recv : S

We shall see later how we may combine Send and Recv to mimic the behaviour of the

composite State effect.

Now that we have defined a number of effects, we would like to program with

them. The FRANK type system statically tracks effects occurring in the program. We

record which effects may be used as part of computation types. It is time to generalise

the form of a computation type we gave earlier.

Definition 3.8 (Computation Types II). A computation type C is an arrow type

A1→ ·· · → An→ [Σ]B

where the Ai’s are argument value types as before. The key difference is the result type

which is now a composite of an ability Σ and a value type B. Syntactically, an ability

consists of a sequence of effect interfaces. Semantically, an ability specifies which

effects may occur when the computation is executed.

Given this updated definition, we can explain the type ascribed to commands from

an effect interface. Unlike data constructors, commands are first-class values. A com-

mand c from effect interface I with signature c : A1 → ··· → An → B has the type
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{A1→ ··· → An → [I]B}. Intuitively, a command is a source of its defining effect so

it gives rise to a suspended computation which, when forced, causes the effect.

Example 3.9 (Storing Data). Consider defining a computation that stores an integer

value in a state cell. We could use the State effect to write this program with the type:

sendInt : {Int -> [State Int]Unit}

Since the command put has type {S -> [State S]Unit} we can define sendInt

simply:

sendInt n = put n

where the type S is instantiated to Int.

The above example demonstrates we can define top-level suspended computations

which are not pure functions. We introduce the term operator to refer to top-level

suspended computations with types captured by Definition 3.8 and its subsequent re-

finements. Thus, a pure function is an operator where the ability is the empty sequence.

We retain the term ‘suspended computation’ to refer more generally to operator argu-

ments with types captured by Definition 3.8 which may be an operator or a command.

3.4 Effect Polymorphism

Effect polymorphism in FRANK is supported by abilities. We gave a simplified account

of abilities in the last section.

Abilities are not just a sequence of concrete effect instances, but also come with

a seed. The seed is either ∅ which represents purity, or ε which is the distinguished

effect variable standing for the effects permitted by the environment — the ambient

ability.

Secondly, abilities may contain multiple instances of the same effect. By con-

vention, the right-most occurrence is the active instance of the effect, meaning that

command invocations resolve to that instance. We say the right-most occurrence shad-

ows the other instances occurring in the ability. In the presence of effect polymorphism

multiple instances are quite useful, allowing a program to occur within any effectful

context. Section 3.12 discusses manipulating the order of effect instances.
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Example 3.10 (Some Abilities). We give some examples of abilities with seeds.

[∅] no effects occur

[ε] only effects supported by the environment occur

[ε|Send Int] any effects supported by the environment, plus sending integers

[∅|State Int] only state commands for Int occur

[∅|State Int,State Bool] two State instances but only state commands for Bool occur

A novel feature of FRANK is that, by default, all operators are implicitly effect

polymorphic. The type signatures assigned to operators in Section 3.1 are polymorphic

in the ambient ability, meaning they may be freely used within a pure or effectful

context.

An interesting consequence is illustrated by the type signature of map. The previous

signature given for map is syntactic sugar for:

map : {{X -> [ε]Y} -> List X -> [ε]List Y}

We see that map permits its first argument to perform any and all of the effects sup-

ported by the ambient. Another way to read the type is that map enforces the effects of

its first argument to match exactly the effects supported by the environment.

Example 3.11. We can leverage the implicit effect polymorphism of map to perform

an effectful task for all elements in a list.

sendList : {List X -> [Send X]Unit}

sendList xs = map send xs; unit

where ‘x; y’ is sequential composition which returns the value of y.

Crucially, the Send interface appears in the ability of sendList. Hence, when map

is invoked in the body of sendList, the ambient ability [ε] contains the Send X effect.

Consequently, we may invoke send commands on the list elements. Recalling the type

ascribed to commands, we see how the typing of map’s first argument, send, matches

the ability provided to map by the environment. If we were to omit the Send effect

from the ability of sendList, the definition above would generate a compile-time type

mismatch.

Given the more explicit type signature for map, we reproduce the definition given

earlier in Figure 3.1. Comparing with other functional languages, our definition of map

is analogous to HASKELL’s map function:
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map : {{X -> [ε]Y} -> List X -> [ε]List Y}

map f [] =

map f (x :: xs) = f x :: map f xs

Figure 3.1: The explicit map definition.

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x : xs) = f x : map f xs

However, HASKELL’s map is a pure function whereas our typing permits effectful com-

putations to occur during the processing of the list elements. So, our type signature is

as general as map’s monadic variant:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

Hence, we have written something as permissive as ML’s map yet retain control of

effects.

There is no effect inference in FRANK. The ambient ability makes clear which

effects are possible at any program point. Operator type signatures always specify an

ability but FRANK’s support for convenient syntactic sugar allows the programmer to

omit it in some cases. Application sites push effects inwards, locally expanding what

is available.

In designing Frank we have sought to maintain the benefits of effect polymorphism

whilst avoiding the need to write effect variables in source code. While we may be

explicit about their presence if desired, there are no explicit effect variables in any of

the examples in this chapter.

3.5 Evaluation Order

FRANK has a strict left-to-right evaluation strategy. So far we have only seen examples

of operators being applied to values. More generally, an operator is applied to poten-

tially effectful computations which are evaluated to values in left-to-right order 1. The

next example highlights computations-as-arguments and the effect polymorphism im-

plicit in computation types.

1Evaluation to values is in keeping with Definition 3.8. We refine this viewpoint in Section 3.8.
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Example 3.12. We revisit Example 3.1 using an effect to retrieve one of the lists from

some source. In this example, the effect polymorphism in type signatures is made

explicit.

combine : {List X -> [ε|Recv (List X)]List X}

combine ys = append recv! ys

where append operator has type signature:

append : {List X -> List X -> [ε]List X}

which says append is polymorphic in the effects provided by the environment. The

environment, or ambient ability, of append corresponds to the ability specified in the

result type of combine which contains the Recv (List X) effect. So, the arguments of

append may invoke recv commands as part of a computation which must eventually

produce a list of type X; in particular, the computation recv! is a permitted argument

to append.

By exploiting the distinction between a value and a computation, we can define

standard control mechanisms as operators. For the sequential composition operators,

we evaluate both arguments before returning the desired value.

fst : {X -> Y -> X} snd : {X -> Y -> Y}

fst x y = x snd x y = y

Due to implicit effect polymorphism, either argument may be effectful. FRANK’s

evaluation order prioritises the effects in the first argument before those in the second

argument. We see that snd x y behaves as sequential composition x; y.

Occasionally, we may want to avoid evaluating an argument upon application. This

behaviour is achieved by suspending the computation.

Example 3.13 (Conditional Branching). Consider defining the traditional conditional

operator:

if : {Bool -> {X} -> {X} -> X}

if tt t f = t!

if ff t f = f!

The second and third arguments to if are suspended computations which return values

of type X. By using suspended computations, evaluation of the branches is prevented.

Once we know the result of the condition, we can explicitly force the desired branch

to execute. The if operator can be used to find the meaning of life:
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if ultimateQuestion! {42} {0}

where ultimateQuestion:{Bool}.

Frank has a bidirectional type system where terms are distinguished by whether

their types are inferred or checked [Pierce and Turner, 2000; Pfenning, 2004]. An ad-

vantage of bidirectional type checking is that in many common cases type annotations

can be omitted by switching between checking and inference contexts. In particular,

anonymous suspended computations can omit type annotations whenever they can be

checked against a type, e.g. when supplied as an argument to a higher-order operator.

In Example 3.4, we saw an example of this where {n -> n + 1} could be supplied

unadorned with type information, its type being inferred through unification of the

arguments to map.

Note however that we may not write {n -> n + 1} 2, for example, because in

this case the anonymous suspended computation appears in an inference context, not

a checking context. One solution is to bind the definition to an operator, addOne,

ascribed with a type:

addOne : {Int -> Int}

addOne n = n+1

which can then be used as addOne 2 since we can infer the type of addOne.

Alternatively, we may define an operator which puts the anonymous suspended

computation into a checking context and solves for its type through unification:

case : X -> {X -> Y} -> Y

case x f = f x

Reversing the order of application results in more aesthetically pleasing code and mim-

ics inline case expressions. For example, we may define short-circuit AND by case

splitting on the result of the first computation.

shortAnd : Bool -> {Bool} -> Bool

shortAnd x c = case x {tt -> c! | ff -> ff}

3.6 Direct Style for Monadic Programming

In Example 3.12 we saw that FRANK supports direct applicative style programming.

That is, we can directly supply one computation as the input to another via, for exam-

ple, an application. A key feature enabling this style is the clear separation of effects
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from values in the syntax of types. By contrast, HASKELL does not have such a clear

type-level distinction and programs written in HASKELL which perform effects utilise

do-notation so as to disambiguate effect values from pure values.

Example 3.14. Consider defining a computation which repeatedly receives lists, con-

catenating them together, until one is empty. In HASKELL, the signature for our re-

ceiver would be given by:

catter :: Receive (List a) (List a)

where Receive r a is the monad for a computation which receives values of type r

and returns a value of type a. The Receive monad is defined by the algebraic datatype:

data Receive r a = Recv (r -> Receive r a)

| Return a

The Monad instance for this datatype is defined by 2:

instance Monad (Receive r) where

return x = Return x

Return x >>= f = f x

Recv g >>= f = Recv (\r -> (g r) >>= f)

Thus, catter is a value representing a monadic computation, performing Receive

effects when executed; its type does not correspond to a pure value but an effect

value. However, the type signature Receive (List a) (List a) does not disclose

its effectful character. Indeed, it looks identical to a pure value type signature such

as Pair (List a) (List a) or Either (List a) (List a). HASKELL program-

mers use do-notation to unambiguously parse a type as an effect value:

catter = do

xs <- recv

case xs of

[] -> return []

xs -> do ys <- catter; return (xs ++ ys)

where the recv :: Receive r r operation requests a value of type r from the en-

closing environment. Hence, recv is a monadic computation and cannot be supplied

2We are omitting the instances for Functor and Applicative, but their definitions perform similar
plumbing of the received value through their respective operators.
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directly to HASKELL’s case construct which only operates on pure values. So, we bind

recv to xs using do-notation which has the consequence of executing the monadic

computation and assigning the value result to xs.

FRANK’s version of catter can be expressed in direct style, without the need for

extra plumbing like do-notation. However, as discussed in Section 3.2, we must still

distinguish between doing an effectful computation and being its suspended counter-

part. For example, we saw that recv! represents doing an effectful computation which

performs Recv effects whereas recv is a first-class value, a suspended computation of

type {[Recv X]X}, which produces a Recv effect only when forced to do so 3.

Example 3.15. Using the distinction between values and computations, effectful com-

putations can be invoked in-place by explicitly forcing them to execute. We recast the

concatenation program in FRANK:

catter : {[Recv (List X)]List X}

catter! = case recv! { [] -> []

| xs -> append xs catter !}

Note the equation for catter has a ‘!’ symbol left of ‘=’. Its inclusion is to highlight

the fact that catter is bound to a suspended computation which has the behaviour of

its defining equation only when forced.

Consider a second example, implementing the C/C++ postfix increment operation.

The operation fetches the current value of a stored integer, increments it and stores the

result before returning the original value. In the following code snippets, we assume a

standard implementation of state (Example 2.2) which, in particular, satisfies equation

(1) in Example 2.8. HASKELL programmers must introduce bindings to express the

desired evaluation order explicitly.

next :: State Int Int

next = do x <- get

put x+1

return x

On the other hand, FRANK avoids explicit plumbing due to its fixed evaluation order,

leading to a more straightforward, direct implementation:

next : {[State Int]Int}

next! = fst get! (put (get! + 1))

3Recall the use of ‘!’ forces a suspended computation to evaluate.



42 Chapter 3. FRANK: A Language for Effectful Functional Programming

3.7 Polymorphic Commands

Recall from Example 3.5 the definition of the Abort effect:

interface Abort = raise : Zero

We would like to use the Abort effect to cease the execution of any computation

when an error condition is triggered. To accomplish this, we need a command which

can be invoked at any type. The raise command alone does not suffice since it returns

a value of the empty type, Zero. However, since Zero is uninhabited we can eliminate

the value returned by raise! by empty case analysis:

abort : {[Abort]X}

abort! = case raise! {}

where abort is a nullary operator polymorphic in its return value X.

The original version of FRANK only supported parametric commands, requiring

the above gymnastics to derive a polymorphic type for a command. Convent [2017]

added support for polymorphic commands [Kammar et al., 2013]. A polymorphic

command c is given by c X : A1→ ···→ An → B, where Ai’s and B are value types, as

before, and the X j’s in X are value type variables which are universally quantified over

the command’s signature, i.e. they may appear in the Ai’s or B.

Example 3.16 (Polymorphic Abort). We can define a simpler version of Abort using

polymorphic commands as follows.

interface Abort = abort X : X

The abort command universally quantifies over the value type variable X, accepts no

arguments, and returns a value of type X. Thus, abort is a polymorphic command and

may be instantiated at any type. It is guaranteed to end computation as there is no way

to provide its continuation with a value for a generic X.

3.8 Effect Handlers: Handling by Application

In call-by-value functional programming, function application has a straightforward

semantics. First, the term in functional position is reduced to a lambda abstraction then

the argument to the function is reduced to a value. Beta reduction follows substituting

the argument value into the body of the function. The resulting term is reduced to

produce a final value.
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Existing languages incorporating effects and handlers introduce a special construct

for handling effects akin to the handle-with construct we introduced in Chapter 2; see

Section 3.14 for more on these languages. In contrast, FRANK generalises the notion of

function application from call-by-value languages to encompass effect handling since,

as mentioned in Section 3.5, arguments to operators may be effectful computations.

Thus, an operator generalises both call-by-value functions and effect handlers, and

operator application is synonymous with both call-by-value function application and

effect handling. Incorporating effect handling into operator definitions requires one

final refinement of the computation type definition for FRANK.

Definition 3.17 (Computation Types III). A computation type C is an arrow type

〈∆1〉A1→ ··· → 〈∆n〉An→ [Σ]B

where the key difference from Definition 3.8 is the arguments are now composed of an

Ai value type, as before, and an adjustment ∆i, written between chevrons. Syntactically,

an adjustment is a sequence of effect interfaces. Semantically, an adjustment specifies

the effects which are handled (i.e. interpreted) by the operator at the respective argu-

ment position. An adjustment extends the ambient ability for a particular argument

position — by convention, the identity extension is omitted.

Given Definition 3.17, a function is simply a special case of an operator where the

adjustment is the identity extension. A unary operator with a non-identity adjustment

is an effect handler and a multihandler is the n-ary counterpart where two or more

arguments have non-identity adjustments.

The pattern grammar for pattern matching clauses is extended to facilitate the han-

dling of effects. We recall the State interface given in Example 3.6:

interface State S = get : S

| put : S -> Unit

Example 3.18 (Interpreting State). We can define an effect handler for handling state-

ful computations capable of manipulating one global memory cell. We define a binary

effect handler state where the first argument carries the current value of the cell, and

the second argument is the stateful computation to be executed. The signature of state

is:

state : {S -> <State S>X -> X}



44 Chapter 3. FRANK: A Language for Effectful Functional Programming

declaring state to be an operator with two arguments where S is a type variable repre-

senting the type of values which are storable, and X is a type variable representing the

type of the eventual return value of the stateful computation.

The type signature for state specifies an adjustment in the second argument po-

sition specifying that the operator handles commands from the State S effect. Thus,

in the second argument the ambient ability is extended to include the State S effect,

permitting get and put to be invoked.

How do we define the state operator? If the second argument to state is a value

of type X, we can just return it as the overall result:

state _ x = x

Since the pattern x only matches values there are still more cases to consider. In

particular, FRANK has patterns to describe the handling of a command known as re-

quest patterns. These request patterns consist of a command paired with a continu-

ation representing the rest of the computation. The adjustment of the second argu-

ment makes clear there must be at least one clause which matches each command for

State 4. Therefore, we must specify how to handle get and put commands invoked

by the second argument. For get, our stateful computation is requesting the current

value of the store.

state s <get -> k> = state s (k s)

A request pattern is given between chevrons containing: the name of the command,

followed by arguments to the command, if any; the symbol ->; and a pattern variable

representing the continuation, in this case given by k.

Handling get requires we provide the current value of the store to k; thus, we apply

k to s. Recall FRANK has shallow handlers which do not automatically re-invoke the

handler on the continuation. Thus, we explicitly re-invoke state by applying it to the

current store value and the rest of the stateful computation in order to handle further

stateful commands.

Lastly, we must handle put which involves updating the store with the new value

we have been provided:

state _ <put s -> k> = state s (k unit)

4Checking that there is at least one matching clause for any sequence of possible arguments is known
as coverage checking, and for a collections of clauses which satisfy it, we say they cover their arguments.
While we insist that pattern matching clauses cover their arguments, we do not formalise the notion in
this dissertation. See Lindley et al. [2017] for an algorithm which can be used to check coverage for
FRANK.
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state : {S -> <State S>X -> X}

state _ x = x

state s <get -> k> = state s (k s)

state _ <put s -> k> = state s (k unit)

Figure 3.2: The state effect handler for handling stateful computations.

again, invoking the continuation and applying the state handler. The state handler

as a whole is presented in Figure 3.2.

Example 3.19 (Stateful Computation). The following example demonstrates the state

operator interpreting the get and put commands invoked by its second argument. De-

fine the following indexing function:

index : {List X -> List (Pair Int X)}

index xs = state 0 (map {x -> pair next! x} xs)

which can be used in an example program manipulating a single state cell:

index "abc" =⇒ [pair 0 `a', pair 1 `b', pair 2 `c']

As demonstrated by state, shallow handlers can straightforwardly express deep

handlers using explicit recursion. Deep handlers have also been shown to encode shal-

low handlers [Kammar et al., 2013; Hillerström and Lindley, 2018].

3.9 Handling on Multiple Arguments

Through n-ary operators, FRANK permits the programmer to handle distinct adjust-

ments at each argument position leading to so-called multihandlers. In contrast, ex-

isting languages based on effects and handlers have restricted support to unary han-

dlers [Bauer and Pretnar, 2015; Hillerström and Lindley, 2016; Leijen, 2017; Biernacki

et al., 2019b]. We give a concrete example of defining and using a multihandler in this

section: the prototypical pipe multihandler.

Example 3.20. The pipe multihandler mediates communication between a producer

and a consumer. The type signature for pipe is:

pipe : {<Send X>Unit -> <Recv X>Y -> [Abort]Y}
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expressing the communication by handling commands of Send X on its first argument

and commands of Recv X on its second argument. The first argument returns a value

of type Unit, whereas the second may have any value type, given by type variable Y,

which is also the overall result type of the operator. Additionally, the operator may

Abort during its execution as specified by its ability.

Defining pipe by pattern matching, the first equation facilitates the communication

between producer and consumer:

pipe <send x -> s> <recv -> r> = pipe (s unit) (r x)

providing the sent value x to the consumer computation r. We re-invoke pipe on the

continuations of each argument to handle further communication.

What if the receiver is finished communicating? Then the second argument returns

a value of type Y which we may return as the overall result. We do this no matter

whether the first argument is a value or a send command, meaning any further send

commands are discarded. This semantics is expressed by the second equation:

pipe <_> y = y

where <_> is a catch-all pattern matching either a unit value or a send command. The

catch-all pattern matches against only those commands which are to be handled at this

argument position. Any other commands are automatically forwarded to the nearest

dynamically enclosing handler for that command. No operator is allowed to intercept

commands for effects which are not specified by the adjustments in its type.

The third and final equation says what to do if the consumer expects a value but

the producer has stopped sending. We consider this to be a communication error and

an abort is raised to indicate that:

pipe unit <_> = abort!

There seems to be a certain amount of arbitrariness in the definition of pipe. The

above clauses prioritise receiving data such that any surplus is discarded and any deficit

is an error. We discuss the implications of alternative definitions in Chapter 7.

The complete definition of pipe is given in Figure 3.3 for reference. Using sendList

from Example 3.11 and catter from Example 3.15, pipe may be used as follows.

pipe (sendList ["do","be",""]) catter! =⇒ "dobe"

where the empty string in the sent list signifies to catter that communication has

ceased.
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pipe : <Send X>Unit -> <Recv X>Y -> [Abort]Y

pipe <send x -> s> <recv -> r> =

pipe (s unit) (r x)

pipe <_> y = y

pipe unit <_> = abort!

Figure 3.3: The complete pipe multihandler definition.

Furthermore, multiple instances of pipe can be combined with a mediator which

both produces and consumes. For example, given

spacer : {[Send String , Recv String]Unit}

spacer! = send recv!; send " "; spacer!

the example above can be amended to

pipe (sendList ["do","be",""])

(pipe spacer! catter !) =⇒ "do be "

where recv commands generated by spacer are picked up by the outer pipe while the

inner pipe interprets its sends. In this example, we see implicit forwarding in action.

When spacer! invokes the recv command, the match against pipe’s first column of

patterns fails because pipe does not handle Recv in its first argument. Therefore, the

recv command is forwarded to its nearest handler, in this case the outer pipe.

We expect pipe to be associative so that:

pipe (pipe sendDoBe! spacer !) catter! =⇒ "do be "

where

sendDoBe! = sendList ["do","be",""]

Indeed, the techniques developed in Chapter 6 will be applied in Chapter 7 to prove

pipe is associative for all possible arguments.

It is worth noting that any program defined using simultaneous multihandling can

in fact be expressed using mutually recursive unary handlers [Lindley et al., 2017].

Indeed, Kammar et al. [2013] implement deep and shallow unary handler versions of

pipe using their Haskell effects library. The implementations are significantly more

complex than the one presented here, requiring the handlers for each process to main-

tain a suspended computation of its partner to sustain the interaction. In particular, the

deep handler implementation depends on a non-trivial mutually recursive data type.
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While other systems such as Multicore OCaml [Dolan et al., 2015] and Eff [Bauer

and Pretnar, 2015] offer improved syntax over Kammar et al.’s library, a programming

burden remains. We believe the FRANK approach is cleaner, leveraging well-known

functional programming techniques (pattern matching and recursion) to completely

capture the interaction.

3.10 Exception Handling

FRANK’s effect type system sometimes leads to more precise typing than seen with

other systems. Consider implementing an exception handler:

catch : <Abort >X -> {X} -> X

catch x _ = x

catch <raise -> _> h = h!

The first argument is a computation which may abort. The second argument is an

alternative computation to run in the case of failure. There is no constraints on the

ambient ability in which catch is executed. In particular, recall from Section 3.4, that

abilities may contain multiple effect instances. So, the ambient ability may or may not

provide the Abort effect; determined at the call site for catch. In contrast, consider

the typing of catch given by the Haskell mtl library [Gill, 2018]:

catchError :: MonadError () m => m a -> (() -> m a) -> m a

Here, catchError is given a type such that both argument computations may raise an

exception. The typing does not restrict abort to be a local ability of the first compu-

tation. Leijen [2014] makes a similar observation in KOKA’s treatment of exceptions

(see Section 3.14 for more on KOKA).

Due to implicit effect polymorphism, FRANK’s typing is more precise: permitting

the alternative computation to abort if and only if the environment offers to handle

it. Additionally, catch may only handle abort commands of the first computation

argument, whereas the type of catchError is not similarly constrained.

3.11 Effect Pollution

Most of the examples we have presented so far have showcased single (multi)handlers

for a collection of effects. One motivation for choosing effects and handlers as a repre-



3.11. Effect Pollution 49

sentation for computational effects is their composability. We saw how straightforward

it is to compose handlers in Section 3.9 where we composed multiple instances of pipe.

Suppose we want an abstraction for communication which does not raise Abort

effects when an error is encountered. We could alter our original definition for pipe to

use the Maybe result type:

data Maybe X = nothing | just X

but then we are stuck with a single interpretation of failure: nothing.

A better approach, more aligned with the ethos of effect handling, is to interpret

Abort effects using nothing, as done by the following Abort handler:

maybe : <Abort >X -> Maybe X

maybe x = just x

maybe <abort -> _> = nothing

Example 3.21 (Pipe or Nothing). Now, we just compose our original pipe multihan-

dler with the above maybe handler for Abort.

maybe (pipe (sendList ["do","be"]) catter !) =⇒ nothing

where the above communication omits the terminating empty string from the sent list

for the purposes of illustrating the error condition. Recall, abort! is invoked if the

number of recv commands exceeds the number of send commands.

Suppose we wish to encapsulate this abstraction into an operator definition which

just re-uses the existing handlers maybe and pipe:

nogood : {<Send X>Unit -> <Recv X>Y -> Maybe Y}

nogood <s> <r> = maybe (pipe s! r!)

Delegating to pipe, we capture the arguments to nogood as suspended computations

and execute them in the context of the maybe and pipe handlers. Unfortunately, this

definition does not type check for the following reason. The bindings s and r are

suspended nullary computations with abilities [Send X] and [Recv X], respectively.

Now, s and r are invoked in a context enclosed by the maybe effect handler which

extends the ambient ability with Abort. So, at the point of invocation, the abilities of s

and r are expected to unify with [Abort,Send X] and [Abort,Recv X], respectively,

which they do not.

Perhaps an obvious attempt at a solution is to just add Abort to the adjustments of

the type signature. Then the above definition type checks without further modification:
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leaky : <Send X,Abort >Unit -> <Recv X,Abort >Y -> Maybe Y

leaky <s> <r> = maybe (pipe s! r!)

Unfortunately, there are some issues with the type of leaky. The intermediate

Abort effect, produced by pipe and handled by maybe, has leaked into the argument

types for leaky, revealing implementation details which should remain hidden. Per-

haps even worse, since an adjustment mentions only the effects which are handled, the

above typing leads to the following capturing behaviour:

leaky (send "drip"; abort!) recv! =⇒ nothing

The first computation raises abort which is interpreted by leaky — surely not what

was intended! Abort effects occurring in the argument computation should be for-

warded to the outer context for handling rather than being interpreted by leaky. The

leaky pipe has broken abstraction by revealing its interpretation for a communica-

tion mismatch in the type of its arguments. We call this phenomenon effect pollution.

To prevent such effect pollution we need a way of hiding intermediate effects so that

external effects with the same name are not accidentally handled.

Biernacki et al. [2018] were the first to describe effect pollution — albeit with

a slightly different manifestation — in the context of their effect calculus λH/L. They

present an abstraction violation for effect polymorphic arguments to higher-order oper-

ators. Incidentally, this problem can also occur in FRANK but we present the problem

with adjustments instead because it can be expressed in less code 5. To solve their

problem, Biernacki et al. introduce an operation called lift which extends the ability of

an expression with an additional effect. It turns out, lift suffices to resolve the issues

with leaky as well.

We extend FRANK with an operation called mask which restricts the ambient abil-

ity by removing an effect instance. We adopt a different name for our solution be-

cause while lift and mask achieve the same outcome, their mechanism should be un-

derstood slightly differently. The difference arises due to FRANK being based on a

bidirectional type system where effects are pushed inwards, whereas λH/L is based on

Hindley-Milner type inference where effects flow outwards. For example, to achieve

an ambient ability of [Send X] at the point of invoking s, we remove (i.e. mask) the

Abort effect from the ambient ability before invoking s. FRANK supports masking

through a more general construct called an adaptor (see Section 3.12).

5The reader interested in the FRANK rendering of Biernacki et al.’s example is encouraged to consult
Appendix A.



3.12. General Rewiring Using Adaptors 51

Example 3.22. To achieve the desired typing for our pipe abstraction, we apply an

adaptor to the computation arguments, s and r, when invoked as arguments to pipe:

sealed : <Send X>Unit -> <Recv X>Y -> Maybe Y

sealed <s> <r> = maybe (pipe (<Abort > s!) (<Abort > r!))

Using the “sealed” pipe, any abort commands invoked by the arguments are properly

forwarded to the outer context.

sealed (send "drip"; abort!) recv! =⇒ abort!

3.12 General Rewiring Using Adaptors

The last section presented one particular use case for an adaptor, namely masking an

effect instance occurring in the ambient. In fact, an adaptor is a map acting on effect

instances, providing more general rewiring for an ability. An adaptor has the form

< Ii(s x1 · · ·xn→ s y1 · · ·ym)>i, a comma separated list of interface names paired with

a mapping of their instances in the ambient (the xi’s) to their remapped configuration

(the yi’s). The transformations on effect instances admitted by adaptors correspond to

the structural rules of logic: weakening, contraction and exchange. We have already

seen weakening which corresponds to mask. In this section, we show how adaptors

support contraction and exchange. Contraction corresponds to duplication of an effect

instance (see Example 3.26), whereas exchange corresponds to swapping effect in-

stances (see Example 3.27). As with mask, which skips the nearest enclosing handler

for the specified effect, all adaptors have computational content.

Consider the problem of parsing a natural number from a string and then returning

its predecessor, if it exists. The complete solution is given in Figure 3.4 while the next

example walks through the definition of the natural number parser.

Example 3.23 (Parsing N). Suppose we aim to parse strings of the form:

"z" = zero

"ssz" = suc (suc zero)

For simplicity, we assume there are no spaces contained within the strings. Addition-

ally, we must decide what to do if the parsed string does not represent a natural number.

Suppose we signal this error state by raising abort. The type signature for our number

parser is given by:

pNat : {String -> [Abort]Nat}
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pNat : {String -> [Abort]Nat}

pNat [] = zero

pNat (x :: []) = if (eqc x 'z') {zero} {abort!}

pNat (x :: xs) = if (eqc x 's') {suc (pNat xs)} {abort!}

pred : {Nat -> [Abort]Nat}

pred zero = abort!

pred (suc n) = n

Figure 3.4: Definitions for parsing numbers and computing their predecessors.

Recall that String is a synonym for List Char. Therefore, we can define pNat by

pattern matching on a lists of characters. We take the empty list to be synonymous

with zero:

pNat [] = zero

For the remaining cases, assume we have an equality operator on characters:

eqc : {Char -> Char -> Bool}

and that our conditional if operator (Example 3.13) is defined in scope. The final char-

acter of any string matching a natural number must be ‘z’. Thus, we have a separate

case for the singleton list:

pNat (x :: []) = if (eqc x 'z') {zero} {abort!}

Finally, the remaining case parses the successors:

pNat (x :: xs) = if (eqc x 's') {suc (pNat xs)} {abort!}

Our solution above does not a priori determine what to do for a particular error

state: that is the job of a handler for Abort.

Example 3.24 (Effect Conflation). One approach would be to conflate the two error

conditions such that a single handler provides the error-handling for both states:

conflate : {String -> [Abort]Nat}

conflate s = pred (pNat s)

yielding the following results:
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maybe (conflate "abc") =⇒ nothing

maybe (conflate "sssz") =⇒ just (suc (suc zero))

maybe (conflate "z") =⇒ nothing

Example 3.25 (Effect Distinction). We may also choose to retain distinct instances of

Abort, one for each error state, and handle them with separate handlers:

distinct : {String -> [Abort ,Abort]Nat}

distinct s = pred (<Abort > (pNat s))

where the type signature specifies two separate instances of the Abort effect. Recall

from Section 3.4 that abilities may contain multiple instances of an effect. There, we

mentioned how the right-most instance is considered the active instance, shadowing

any others occurring in the ability. Adaptors provide a mechanism to gain access to the

other instances occurring in the ability.

In this example, we use mask to remove an instance of Abort from the ambient

ability. Note, that the adaptor <Abort> is syntactic sugar for:

<Abort(s x -> s)>

using the more general mapping notation for specifying adaptors. Notice how the map

for defining mask reflects the intuition given previously: it is removing an instance of

Abort from the ambient ability — the instance corresponding to x — moving the other

instances — represented by s — one position to the right. The distinct operator has

the following behaviours on the example programs:

maybe (catch (distinct "abc") {zero}) =⇒ nothing

maybe (catch (distinct "sssz") {zero}) =⇒ just (suc (suc zero))

maybe (catch (distinct "z") {zero}) =⇒ just zero

Example 3.26 (Duplicating Effect Instances). Using the general form for an adaptor,

we can actually obtain the conflated version from the distinct version by duplicating

an Abort instance:

conflate2 : {String -> [Abort]Nat}

conflate2 s = <Abort(s x -> s x x)> (distinct s)
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Here, we remapped the first occurrence of Abort in the ambient to occupy the first and

second occurrences in the subterm — distinct s — ensuring that, when conflate2

is handled, any aborts raised will be handled by the same handler. For example,

maybe (conflate2 "abc") =⇒ nothing

maybe (conflate2 "sssz") =⇒ just (suc (suc zero))

maybe (conflate2 "z") =⇒ nothing

Example 3.27 (Swapping Effect Instances). We may swap two instances of an effect

by rearranging the order of their pattern variables in the mapping. Suppose we want to

swap the error handlers for the parsing example:

distSwp : {String -> [Abort ,Abort]Nat}

distSwp s = <Abort(s x y -> s y x)> (distinct s)

without changing the order of our abort handlers, distSwp inverts the error handling

for the parsing and predecessor errors:

maybe (catch (distSwp "abc") {zero}) =⇒ just zero

maybe (catch (distSwp "sssz") {zero}) =⇒ just (suc (suc zero))

maybe (catch (distSwp "z") {zero}) =⇒ nothing

Combinations of mask, copy and swap can be used to build up quite sophisticated

adaptors. In practice however, the basic operations seem to suffice for our current

examples suite. Thus it would perhaps be beneficial to provide convenient syntactic

sugar for these basic structural transformations. We already provide shorthand for

masking an effect instance. Perhaps we could introduce keywords, e.g. Abort(copy)

and Abort(swap) for duplicating and swapping occurrences of Abort, respectively.

3.13 Extended Example: Hindley-Milner Type Inference

In this section, we implement type inference for a Hindley-Milner type system [Milner,

1978] as an extended example of the effects and handlers paradigm. Specifically, we

choose to implement the algorithm presented by Gundry et al. [Gundry, 2013; Gundry
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(Terms) M,N ::= x | λx.M |M N

| let x = M in N

(Monotypes) S,T ::= α | S→ T

(Polytypes) P,Q ::= T | ∀α.P

Figure 3.5: HM calculus types and terms.

et al., 2010] because of its simplicity and its connection to the FRANK system itself:

this algorithm inspired the implementation of FRANK’s typechecker. Thus, being able

to express the algorithm in Frank shows the applicability of effects and handlers to

algorithms used in practice.

We provide a step-by-step description of how the algorithm is represented in FRANK.

For brevity, we show only the data representations and most interesting or significant

operators. Readers curious about the full implementation may consult the source code

in the examples/gundry-ml folder in the FRANK repository.

Similarly to the above point, our description of the “variables-in-context” algorithm

focuses on the essential points in order to understand our implementation, omitting a

formal and language-independent description of it. Furthermore, we do not comment

or compare to historical approaches to Hindley-Milner type inference. For a complete

formal account of the algorithm we refer the reader to Gundry’s thesis [Gundry, 2013].

3.13.1 The Calculus, Contexts, and Computational Effects

Following Gundry, we implement type inference for the Curry-style 6 simply-typed

lambda calculus extended with polymorphic let expressions. The monotypes, poly-

types, and terms of the calculus are presented in Figure 3.5. Variables bound by lambda

abstractions have monomorphic type. Variables bound by let are assigned a polytype

(also known as a type scheme), a type enclosed by ∀-quantified variables.

Gundry et al.’s algorithm uniformly characterises the problems of type inference

and unification within the same constraint problem solving framework in contrast to

traditional approaches which typically treat unification as a black box [Pierce, 2004,

see Chapter 10]. A unification problem involves assigning values to unknown variables

(or metavariables) in order to satisfy an equation. Type inference is the process of

solving unification problems such that a typing judgement holds. Gundry et al. give

6Lambda abstractions are not annotated with the type of their bound variable [Sørensen and Urzy-
czyn, 2006].

examples/gundry-ml
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a general account of both problems by tracking progress towards a solution in the

context. That is, regular typing contexts are extended to keep track of metavariables

as well as ordinary type and term variables. Contexts include both declarations and

definitions of metavariables which are generated during type inference and solved for

during unification. The full grammar for contexts is given by:

(contexts) Γ ::= · | Γ,x : P | Γ,α : ? | Γ,α := S | Γ#

Context are dependency-ordered lists, permitting later entries to depend on earlier

ones. They admit an information ordering between contexts based on simultaneous

substitutions of types for metavariables. By substituting types for metavariables, the

ordering yields a more informative context which constitutes the progress made to-

wards solving a constraint problem. The type inference and unification algorithms

seek to produce “information increases” which are minimal or least constraining. For-

mally, a substitution θ is a minimal solution if for any other substitution θ′ which solves

the problem there exists a substitution ζ such that, θ′ = ζ◦θ.

A minimal solution is obtained by moving declarations in the context leftwards as

little as possible. Given the dependency inherent in contexts, this movement increases

the scope of a declaration — making it more global — and constraining its set of

solutions. The # marker acts as a locality separator: the information order may push a

declaration left of a # but such movements are irreversible, indicating the declaration

has escaped the local scope delineated by # and become more globally relevant.

In FRANK, we choose a de Bruijn [1972] representation for the calculus such that

type and term variables are represented by natural numbers (or in this case, positive

integers 7).

data Ty = meta Int | var Int | arr Ty Ty

data Sch = mono Ty | poly Sch

data Tm = varx Int | lam Tm | app Tm Tm | seq Tm Tm

We distinguish between metavariables (meta) to be solved for by unification and rigid

type variables (var) introduced by the ∀ quantifier. We implement appropriate bind and

unbind operations to mediate between the two; we omit their definition as they are not

7Currently, FRANK does not automatically convert positive integers to their Nat encoding, so we use
Int for indices to make the code more readable.
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particularly interesting and their only point of use is in the definition of specialise

(see below for a description of this operator).

Example 3.28 (de Bruijn Type Encoding). As an example of the de Bruijn encoding,

the type of the K combinator, ∀α.∀β.α→ β→ α, is rendered in FRANK as:

kk : {Sch}

kk! = poly (poly (mono (arr (var 1) (arr (var 0) (var 1)))))

noting that the numbering for a bound variable indicates the position of its binder

starting from zero for the innermost binder.

An Entry in a context is either a bound metavariable (bmv), a bound term variable

(btv), or a locality marker (mrk).

data Entry = bmv Int (Decl Ty) | btv Sch | mrk

A term variable binding only requires the type scheme assigned to the variable since

once added to the context, a term variable may be removed but its position is otherwise

fixed. Therefore, the type of the variable (varx n) is always the nth btv entry in the

context. In contrast, a metavariable entry, bmv, may be moved during unification, so

the data constructor bmv contains the metavariable’s numeric identifier. Additionally,

the metavariable binding contains its declaration information, Decl Ty, given by:

data Decl X = hole | defn X

which captures the two possible metavariable entries that may appear in a context:

a declared yet undefined metavariable or a metavariable assigned a (possibly open)

monotype.

Finally, we render the grammar for contexts given previously as backwards lists (or

“snoc” lists) of entries:

data Bwd X = emp | snoc (Bwd X) X

type Ctx = Bwd Entry

where type creates a type synonym. Type synonyms are currently not implemented

in FRANK, but they are akin to interface aliases [Convent, 2017] which are supported.

We use them here simply to abbreviate the more verbose types on the right-hand side;

the actual source code uses the more verbose type. We define another type synonym

for suffixes:

type Suffix = List (Pair Int (Decl Ty))
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A Suffix is a collection of metavariable declarations without any term variables or lo-

cality markers occurring between them. A suffix is collected during the type inference

of the binding of a let expression. The variables contained in the suffix represent the

variables which may be generalised over to create a type scheme for the binding.

The algorithm modifies a context so we require an environment for storing and

updating the current context. We use our State effect to accomplish this:

interface CtxSt = [State Ctx]

The CtxSt effect is an interface alias [Convent, 2017; Convent et al., 2020] which

assigns a name to a collection of effect interfaces. In this case, we have only one

interface: State where its parameter has been instantiated to the type of contexts.

Thus, the above definition is akin to defining:

interface CtxSt = get : Ctx

| put : Ctx -> Unit

For generating new metavariables, we need a fresh supply of integers, which we

represent by the following effect interface:

interface Names = fresh : Int

We reserve the Abort effect for unexpected errors signifying a bug in the imple-

mentation, and define a TypeError effect for expected errors generated by impossible

unification problems:

interface TypeError = raise X : String -> X

where the argument to raise may be presented to the user.

Finally, we define two more interface aliases to provide fine-grained specifications

of the abilities of subsequent operators:

interface NmSt = [CtxSt ,Names]

interface Contextual = [Abort ,NmSt ,TypeError]

The Contextual effect represents the overall collection of effects for the type infer-

ence algorithm. It corresponds to the HASKELL monad of the same name in Gundry

et al.’s implementation. However, in some cases we may only need a subcollection of

commands from the full Contextual effect. The NmSt effect is intended for situations

which do not trigger an error condition under any circumstances.

We summarise all of the datatypes and effects we have covered in this section in

Figure 3.6.
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Example 3.29 (Generating Fresh Metavariables). The freshMeta operator uses the

fresh command to generate a fresh positive integer and append a metavariable decla-

ration onto the context:

freshMeta : {[NmSt]Int}

freshMeta! = let x = fresh! in

modify {sx -> snoc sx (bmv x hole )}; x

The modify operator applies the provided suspended computation to the current value

stored in the state cell. Note that by implicit effect polymorphism, if freshMeta is

invoked in an environment with ability [Contextual], the implicit effect variable will

unify with the remaining effects. In contrast, the HASKELL implementation gives the

coarser [Contextual]Int result type to freshMeta. We adopt similar simplifications

throughout the implementation, giving the most precise types possible to operators.

3.13.2 The Type Inference Algorithm

Now we consider implementing the type inference algorithm itself. We discuss the

definition one language construct at a time. The definition is presented in full in Fig-

ure 3.7.

For inferring the type of a variable, we simply have to lookup its type in the context:

infer (varx x) = specialise (findSch x)

where findSch accepts the de Bruijn index of a term variable and traverses the current

context, returning its corresponding type scheme. If the type returned by findSch

turns out to be monomorphic then specialise simply returns it. On the other hand,

for a polytype, specialisation instantiates all quantified type variables turning them into

fresh unknown metavariables.

Example 3.30 (In Search of a Scheme). We briefly describe the implementation of

findSch because it provides another illustration of fine-grained effect specifications

and also demonstrates some error cases. The definition of findSch simply delegates

the search to another operator which accepts the current context as its second argument:

findSch : {Int -> [Abort ,CtxSt ,TypeError]Sch}

findSch x = help x get!

where help is defined by the following cases:
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- - C a l c u l u s

data Ty = meta Int | var Int | arr Ty Ty

data Sch = mono Ty | poly Sch

data Tm = varx Int | lam Tm | app Tm Tm | seq Tm Tm

- - C o n t e x t s

data Entry = bmv Int (Decl Ty) | btv Sch | mrk

data Decl X = hole | defn X

data Bwd X = emp | snoc (Bwd X) X

type Ctx = Bwd Entry

type Suffix = List (Pair Int (Decl Ty))

- - C o m p u t a t i o n a l E f f e c t s

interface CtxSt = [State Ctx]

interface Names = fresh : Int

interface TypeError = raise X : String -> X

interface NmSt = [CtxSt ,Names]

interface Contextual = [Abort ,NmSt ,TypeError]

Figure 3.6: The complete collection of types and effects used by the algorithm.
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help : {Int -> Bwd Entry -> [Abort ,TypeError]Sch}

help x bemp = raise "Out of scope"

help 0 (bcons ctx (btv t)) = t

help x (bcons ctx (btv t)) =

if (x > 0) {help (x-1) ctx} {abort!}

help x (bcons ctx _) = help x ctx

Notice how help does not need its ability to include CtxSt, specifying only the error

effects it may produce. A type error is raised if the context does not contain any such

variable; a programmer error. An abort is raised if the number given to help is less

than zero. Note that if help is called with x≥ 0, then this condition will not be reached.

It is only reached if some other part of the implementation, e.g. findSch, calls help

with x < 0; hence, a bug in the implementation.

Note, we could have encapsulated the collection of effects in findSch or help as

an alias. For example,

interface Errors = [Abort ,TypeError]

Doing so is a trade-off between conciseness and transparency. Creating too many

aliases may make it more difficult to determine which commands are actually permit-

ted.

For the lambda abstraction case, we generate a fresh metavariable for the type of

the argument, and infer the type of the body in a context extended with the argument:

infer (lam t) = let a = meta freshMeta! in

let b = extend (mono a) {infer t} in

arr a b

The extend operator temporarily extends the context with the specified term variable

and runs the provided suspended computation in this extended context.

Application is interesting because it invokes the unification procedure. First, we

infer the type of the function and the argument. Then we generate a fresh metavariable

to stand for the result type of the function:

infer (app f s) = let a = infer f in

let b = infer s in

let c = meta freshMeta! in

unify a (arr b c); c
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infer : {Tm -> [Contextual]Ty}

infer (varx x) = specialise (findSch x)

infer (lam t) = let a = meta freshMeta! in

let b = extend (mono a) {infer t} in

arr a b

infer (app f s) = let a = infer f in

let b = infer s in

let c = meta freshMeta! in

unify a (arr b c); c

infer (seq s t) = let a = generaliseOver {infer s} in

extend a {infer t}

Figure 3.7: Type inference for HM calculus

We require f to have function type where its domain matches the type of s. So we pass

this problem to the unifier to solve and return the result type of the function, c. The

implementation of unification exactly mirrors the implementation given by Gundry

[2013] so we omit it.

Lastly, polymorphic let expressions infer a type for the bound term and then gener-

alise it, quantifying over all the local metavariables. The final step is to infer the type

of the let body in an extended context:

infer (seq s t) = let a = generaliseOver {infer s} in

extend a {infer t}

Generalisation is defined such that we never generalise variables which escape the

scope of s. Adding a marker to the context before executing the provided computa-

tion suffices to ensure this (Figure 3.8). The skimCtx operator constructs a suffix of

metavariables from the context by repeatedly popping the right-most entry until the

marker is reached. The up operator generalises a suffix of metavariables over a type to

produce a type scheme.

3.14 Discussion and Related Work

There is a rapidly growing literature on algebraic effects and handlers [Yallop et al.,

2019]. Some work pertains to the theoretical foundations, whilst others are more fo-
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generaliseOver : {{[CtxSt ,TypeError]Ty} -> [CtxSt ,TypeError]Sch}

generaliseOver m = modify {sx -> snoc sx mrk};

let a = m! in

let suffix = skimCtx [] in

up suffix a

skimCtx : {Suffix -> [CtxSt ,TypeError]Suffix}

skimCtx xs = case popL!

{(bmv n d) -> skimCtx ((pair n d) :: xs)

| mrk -> xs}

Figure 3.8: Generalisation of type variables.

cussed on the use of effect operations and their handlers as a programming abstraction.

In this section we focus on the body of work devoted to programming with effects and

handlers. In particular, we emphasise languages with first-class support for effects and

handlers. During our discussion, we also highlight FRANK’s connection to the broader

literature on type systems, suggesting some areas worthy of further investigation.

Frank. A number of extensions to FRANK were introduced by Convent [2017]. Many

of these are also described in the JFP article [Convent et al., 2020]. In this chapter, we

covered Convent et al.’s introduction of polymorphic commands and interface aliases.

We omit discussion of the built-in effect for ML-style references which leverages the

polymorphic commands feature. Convent described a direct small-step operational se-

mantics for the FRANK surface language. This semantics was later extended by Con-

vent et al. [2020] to incorporate adaptors. Adaptors were added to provide abstraction

and encapsulation of effects; FRANK’s proposed solution to the effect pollution prob-

lem (see below for alternative solutions). Adaptors can appear in terms, as presented

in this chapter, and also within adjustments where they perform a remapping of the

ambient ability supplied to an argument computation. The latter case is known as an

adaptor adjustment. Convent et al. [2020] present an extended concurrency example

in FRANK which relies heavily on adaptors.

As mentioned, we have implemented a prototype of FRANK [Convent et al., 2019]

using HASKELL. In order to rapidly build a prototype, we consciously decided to take

advantage of a number of existing technologies. The backend of FRANK is imple-
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mented by first translating to SHONKY [McBride, 2016], which amounts to an untyped

version of Frank. The SHONKY implementation executes code directly through an ab-

stract machine. We have modified SHONKY slightly to support features like adaptors

and ML-style references. As discussed in Section 3.13, the FRANK typechecking algo-

rithm is inspired by the “type-inference-in-context” technique of Gundry et al. [2010];

the technique has been shown to scale to the dependently typed setting [Gundry, 2013].

Although we do not explicitly spell out the details in this chapter, FRANK is inden-

tation sensitive. In order to implement indentation sensitivity, Adams and Ağacan

[2014] introduce an extension to parsing frameworks based on parsing expression

grammars. Such grammars provide a formal basis for the Parsec [Leijen and Martini,

2015] and Trifecta [Kmett, 2015] parser combinator HASKELL libraries. In contrast

to the ad-hoc methods typically employed by many indentation sensitive languages

(including HASKELL and IDRIS [Brady, 2013]), Adams and Ağacan’s extension has a

formal semantics. FRANK’s parser is written using Trifecta with the indentation sensi-

tive extension, which greatly simplifies the handling of indentation by separating it as

much as possible from the parsing process.

Eff. Bauer and Pretnar [2015] introduced the EFF programming language, ML-like

language providing first-class support for effects and handlers. The full language is

based on a fine-grained call-by-value calculus, although the concrete syntax hides this

from the programmer. Unlike FRANK, EFF has deep handlers and distinguished con-

structs for defining and invoking handler. Their EFF calculus was given a denotational

semantics yielding a sound induction principle for reasoning about effectful compu-

tations [Bauer and Pretnar, 2014]. A distinct early feature of full EFF in contrast to

most other languages in this space is the support for dynamic creation of instances;

which were assumed to be statically known for the purposes of their metatheory. In

later revisions to the language, instances were removed in favour of a simpler system.

Other languages. Leijen’s [2014] KOKA has also been extended to provide first-

class support for effects and handlers. The implementation leverages KOKA’s existing

row-polymorphic effect system. KOKA’s effect system also allows duplicate labels in

effect rows.

Hillerström and Lindley [2016] describe extending LINKS with algebraic effects

and handlers leveraging its existing row-polymorphic effect system. Unlike FRANK

and KOKA, effect rows in LINKS cannot have duplicates. However, their system does
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support presence polymorphism allowing the absence of an effect to be recorded. An

absence annotation is akin to the mask adaptor adjustment described by Convent et al.

[2020]. Hillerström and Lindley formalise their extension as a core calculus reminis-

cent of the intermediate form used within the LINKS compiler, proving a correspon-

dence result between its small-step semantics and an abstract machine semantics. Their

abstract machine semantics is similar to SHONKY.

Biernacki et al.’s [2019b] HELIUM is a functional language supporting effects and

handlers, and an ML-style module system providing two abstraction mechanisms for

effects: local effects and existential effects. Existential effects appear as part of a mod-

ule’s interface in a similar vein to existential types, ensuring clients can never handle

them locally and must use built-in handler(s) provided by the module interface. Lo-

cal effects restrict the scope of their label and operations to a single expression, e.g.

the body of a function. They provide an alternative solution to the problem identi-

fied by Biernacki et al. [2018] and described in Appendix A. Both mechanisms utilise

effect coercions, a generalisation of lift, and similar in expressive power to FRANK’s

adaptors.

As an extended HELIUM example, Biernacki et al. present a unification algorithm

using a union-find based data structure, a key component of implementations of algo-

rithm W [Milner, 1978] for Hindley-Milner type inference. While, in our example

(Section 3.13), effects were used simply to provide more fine-grained specifications,

Biernacki et al.’s approach is closer in spirit to Atkey [2015] who decomposes the

typechecking process into a series of commands. These commands are combined to

build abstract tactics or “scripts”. Depending on how the commands are interpreted the

scripts may yield typecheckers or elaborators. In a similar vein, it would be interesting

to explore whether we can express different type inference algorithms under a common

effectful interface.

Multihandlers. Multihandlers are a distinctive feature of FRANK with respect to

other languages and calculi for effects and handlers. However, there are a number

of programming abstractions which bear similarities with them. Joinads are an ex-

pressive programming abstraction suitable for concurrent, parallel and event-driven

programming [Petricek and Syme, 2011]. Using a computation type-specific pattern

matching construct joinads can express join patterns [Fournet and Gonthier, 1996] for

communicating processes, futures for parallelism, and event synchronisation. Petricek

and Syme [2011] define joinads as a syntactic extension to the F# language. That is,
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the match construct is not a built-in feature of the language but is translated to a series

of function calls. In contrast, FRANK multihandlers are given a direct semantics. The

patterns for FRANK multihandlers are slightly more expressive, being able to match

on partially complete computations via request patterns. Joinads restrict their pattern

matching to binding on the final result only. As a consequence, joinads admit reorder-

ing of computation arguments whereas FRANK multihandlers are sensitive to argument

order (see Section 7.2).

Effect Pollution. As described in Section 3.11, Biernacki et al. [2018] introduce an

operation called lift which extends an effect row with an additional effect instance.

Leijen [2014] describes a similar operation which he calls inject.

Zhang and Myers [2019] present an alternative approach to ensure handlers encap-

sulate effects. Their key idea is to extend types with handler variables and handler

polymorphism. The variables act as labels on effects in the ambient context and de-

termine which handlers interpret which effects. Handler polymorphism is resolved by

substituting the nearest lexically enclosing handler for the handler variable. A capabil-

ity region system ensures that computations do not escape their handlers. Following

Biernacki et al. [2018], they develop a sound logical relations model and prove their

system satisfies an abstraction theorem. While Zhang and Myers do not present an

implementation, they claim that the programmer need not deal with handler variables

in practice. Rather, they outline a desugaring and rewriting pass which inserts the

requisite variable bindings and handler instantiations.

Biernacki et al. [2019b] introduce effect coercions as a generalisation of lift. Like

adaptors, coercions have computational content so persist at runtime. While they sup-

port lifting and swapping within an effect row, they do not support duplication. How-

ever, this is not a serious limitation since we can achieve effect duplication using a

handler, e.g. we can obtain an equivalent definition to conflate2 in Example 3.26 by

wrapping (distinct s) in a call to the catch handler of Section 3.10, and re-raising

the abort command in the alternative computation.

Session Types for Communicating Processes Example 3.20 demonstrated com-

munication between two processes. However, we observed that there was a need to

abort the interaction if the two processes did not agree on the how many messages

were to be sent and received. That is, pipe does not establish an agreed communi-

cation protocol between the two processes. To achieve compliance and be capable of
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expressing more sophisticated protocols, we could extend FRANK’s type system with

session types [Honda, 1993] which statically enforce communicating parties to adhere

to an agreed sequence of interactions.

Introducing session types into the FRANK ecosystem is not without its challenges.

The session type of a channel endpoint evolves as communication proceeds; its type is

a dynamic resource. Given the FRANK programmer’s ability to manipulate delimited

continuations using handlers, resources must be carefully managed and deallocated

when no longer required. Furthermore, in real-world distributed applications failures

are inevitable, and must be accounted for in any practical type-based solution. How to

integrate session types and FRANK’s effect handlers to support distributed applications

is an interesting area to investigate.

Fowler et al. [2019] provide a potential starting point, integrating asynchronous

session types with exception handling. The combination permits explicit cancellation

of a protocol when a failure mode is encountered. Fowler et al. provide a compelling

distributed example application in the form of a web-based chat server.





Chapter 4

Triangulating Context Lemmas

This chapter introduces a distinctive proof method, triangulation, for proving context

lemmas. We apply the method to a simply-typed fine-grained call-by-value λ-calculus.

First, we use the method to show Milner’s [1977] classical result holds for our calculus.

Second, we demonstrate the extensibility of the technique by proving a CIU result à la

Mason and Talcott [1991], formulated with frame stacks [Pitts and Stark, 1998; Pitts,

2005].

Throughout this chapter, our presentation is influenced by our formalisation of

the results in the AGDA interactive theorem prover which leverages state-of-the-art

technology for dealing with well-typed and well-scoped terms [Allais et al., 2017]. In

particular, we show that, contrary to popularly held belief [Lassen, 1998a; Pitts, 2011],

handling concrete contexts even in the formalised setting is straightforward. That said,

we give pen-and-paper renderings of our results in this chapter. For full details, the

reader may consult the complete source code of our AGDA formalisation, which is

available online at:

https://www.github.com/cmcl/triangulating-context-lemmas

Furthermore, we provide a Rosetta Stone in Table 4.1 at the end of the chapter, medi-

ating between informal concepts, LATEX rendering, and their AGDA formalisation.

While we are not the first to undertake such a formalisation effort [Ambler and

Crole, 1999], we believe our concrete, first-order representation to be more robust

than previous attempts; we compare our development to previous formalisations in

Section 4.4.

By formalising results for both applicative and CIU theorems, we hope to ease the

extension of our development to a calculus supporting algebraic effects and handlers,

69
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(Terms) M,N ::= V | if V then M else N |V V

| let x = M in N

(Values) V,U ::= x | tt | ff | n | () | λx : A.M

(Types) A,B ::= int | bool | unit | A→ B

(Sugar) M V ::= let f = M in f V (where f is fresh)

Figure 4.1: λ→FG types and terms.

where fine-grained stack-based approaches seem a better fit than big-step semantics.

Demonstrating extensibility of our approach is moreover in the spirit of other proposals

for mechanised metatheory developments [Aydemir et al., 2005].

This chapter is based on the publication:

Craig McLaughlin, James McKinna, and Ian Stark. Triangulating context lemmas.

In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Pro-

grams and Proofs, CPP 2018, pp. 102–114, 2018. doi:10.1145/3167081.

4.1 A Fine-Grained Call-By-Value Calculus

In this chapter, the triangulation proof method is applied to a call-by-value calculus,

λ→FG, inspired by fine-grained call-by-value (FGCBV) [Levy, 2004] and a normal form

for terms used by Pitts [2005]. Figure 4.1 gives an informal context-free grammar

for the calculus, with named λ and let bindings. The distinguishing features are the

separation between the grammars for values and terms (we systematically elide the

explicit lifting of values into terms) and the restriction to one term constructor, let,
to express sequencing. We introduce the syntactic sugar M V (also in Figure 4.1) to

express application of a term M to a value V . We consider a simple type discipline,

where τ ranges over ground types (τ ∈ {bool, int,unit}). For values, x ranges over

an infinite set of variables, b ranges over {tt, ff}, and n over Z. In the definitions and

proofs that follow, = and , denote equalities that hold definitionally, and ≡ denotes

equalities which hold propositionally.

4.1.1 Formalising λ→FG

The results of this chapter have all been formalised in the AGDA [Norell, 2009] in-

teractive theorem prover. While we give pen-and-paper renderings of our results, our

http://dx.doi.org/10.1145/3167081
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presentation is influenced by the first-order de Bruijn representation in a dependently-

typed meta-language such as our MLUTT. As mentioned in Chapter 2, we follow the

discipline advocated by Allais et al. [2017], using their framework to represent the

informal syntax of Figure 4.1 using inductive families [Dybjer, 1994], ensuring that

our syntax is well-typed and well-scoped by construction. As demonstrated in Exam-

ple 2.13, the data types describing variables, values and terms of the object language,

λ→FG, are indexed by an object-level type and context. Thus we express λ→FG directly

via its typing rules, as in Figure 4.2. A consequence of our encoding is the occasional

requirement to introduce a renaming, in particular the special case of weakening, to

ensure the type-and-scope correctness of terms. For example, in the syntactic sugar for

application, the argument is applied in an environment extended with the binding for

the function:

...

Γ `M : A→ B

Γ `V : A

Γ,A→ B ` weak(V ) : A

Γ `M V : B

where weak takes Γ-terms to Γ,A-terms for any type A by shifting de Bruijn indices.

From now on, for readability, we elide any explicit weakening in terms.

ACMM uses first-order abstract syntax for term representation. However, for oper-

ations and proofs defined over terms, ACMM employs weak HOAS [Despeyroux et al.,

1995]. The framework defines a semantics as an instantiation of a generic Kripke-style

traversal over the abstract syntax parametric in the interpretations V , M V , and M T
for variables, values, and terms, respectively. Renaming, capture-avoiding substitu-

tion, etc. arise as instances of the generic traversal. Semantics are Kripke in the sense

that interpretations for binders must hold under all possible environment extensions.

For example, the rule for interpreting λ is as follows:

�(V A ∆−→M T B ∆)

M V (A⇒ B) Γ

where the modality � quantifies over all environment extensions Γ⊆ ∆ by renamings.

Definition 4.1 (Simultaneous Substitution). For typing environments Γ and ∆, let

θ : Γ � ∆ denote a simultaneous substitution θ of variables in environment Γ by λ→FG

values in environment ∆. Informally, θ takes Γ-terms to ∆-terms: given Γ `M : A

we may apply the substitution to M and obtain ∆ ` θ(M) : A. In the special case of

θ : Γ,A � Γ given at var0 by value Γ `V : A and everywhere else the identity we write
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(Environments) Γ,∆ ::= · | Γ,A
(Indices) k ::= 0 | succk

ZERO

0:(A ∈ Γ,A)

SUCC

k :(B ∈ Γ)

succk :(B ∈ Γ,A)

VAR

k :(A ∈ Γ)

Γ ` vark : A

BOOLEAN

Γ ` b : bool
(b = tt, ff)

INT

Γ ` n : int
(n ∈ Z)

UNIT

Γ ` () : unit

FUN

Γ,A `M : B

Γ ` λA M : A→ B

IFTHENELSE

Γ `V : bool Γ ` Ntt : A Γ ` Nff : A

Γ ` if V then Ntt else Nff : A

APP

Γ `V : A→ B Γ `U : A

Γ `V U : B

LET

Γ `M : A Γ,A ` N : B

Γ ` letA M N : B

Figure 4.2: λ→FG typing rules

IFTHENELSE

if b then Ntt else Nff Nb

APPBETA

(λA M) V  M[V ]

Figure 4.3: λ→FG primitive reduction semantics

θ(M) as M[V ] in the usual way. For the special case of θ : Γ � · we say that θ is a

Γ-closing substitution. If θ : Γ � ∆ and θ′ : ∆ �Θ then θ′ ◦θ : Γ �Θ denotes the com-

position of the simultaneous substitutions.

Definition 4.2. Given θ : Γ � ∆, define θk to be the value ∆ `V : A specified for the

variable Γ ` vark : A. Then, θ0 denotes the value specified for var0. For θ : Γ,A � ∆,

define the simultaneous substitution (succθ) : Γ � ∆ by its behaviour on variables,

Γ ` vark : A, for all indices k:

(succθ)k = θ(succk) .

We define a small-step operational semantics for λ→FG via a primitive reduction on

closed terms, in Figure 4.3, which is then contained within the general reductions of
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PRIMRED

M M′

M −→M′

LETVALUE

letA V M −→M[V ]

LETRED

M −→M′

letA M N −→ letA M′ N

Figure 4.4: λ→FG small-step operational semantics

VALUE

· `V : A

V ⇓A V

IF

Nb ⇓A V

if b then Ntt else Nff ⇓A V

APP

M[V ] ⇓B U

(λA M) V ⇓B U

LET

M ⇓A V N[V ] ⇓B U

letA M N ⇓B U

Figure 4.5: λ→FG big-step operational semantics

Figure 4.4. The separation of these two relations is inspired by Pitts [2005] and is used

when we define frame stack evaluation in Section 4.3. Both relations are type-correct

by construction; the proof of type preservation is immediate.

Figure 4.5 presents λ→FG evaluation semantics as a type-indexed relation between

closed terms and values. We omit typing annotations where unambiguous. Evaluation

is closed under the reduction relations: the proof is straightforward by induction over

derivations.

Lemma 4.3 (Reduction Respects Evaluation).
If M M′ or M −→M′ then M ⇓ V if and only if M′ ⇓ V .

4.1.2 Formalising Contexts

As a step towards formalising observational approximation, we treat contexts as an ex-

tension of λ→FG syntax; and thanks to ACMM the grammar of these concrete contexts

is directly expressible as an inductive definition. A term context C is a possibly-open

term of arbitrary type containing zero or more occurrences of a well-typed and well-

scoped hole. Analogously, a value context V is a possibly-open value of arbitrary type

containing zero or more occurrences of such a hole. Naturally enough our formalisa-

tion enforces well-typed and well-scoped contexts, by construction, in the same way it
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VCCHOLE

Γ ` 〈〈−〉〉 : 〈〈Γ ` A〉〉VCCA

VCCTRM

∆ `M : B

∆ ` trm M : 〈〈Γ ` A〉〉VCCB

VCCFUN

∆,B `D : 〈〈Γ ` A〉〉VCCC

∆ ` λB D : 〈〈Γ ` A〉〉VCC(B→C)

VCCIFTHENELSE

∆ ` V : 〈〈Γ ` A〉〉VCCbool ∆ ` Ctt : 〈〈Γ ` A〉〉VCCB ∆ ` Cff : 〈〈Γ ` A〉〉VCCB

∆ ` if V then Ctt else Cff : 〈〈Γ ` A〉〉VCCB

VCCAPP

∆ ` V : 〈〈Γ ` A〉〉VCC(B→C) ∆ `W : 〈〈Γ ` A〉〉VCCB

∆ ` V W : 〈〈Γ ` A〉〉VCCC

VCCLET

∆ `D : 〈〈Γ ` A〉〉VCCB ∆,B ` E : 〈〈Γ ` A〉〉VCCC

∆ ` letB D E : 〈〈Γ ` A〉〉VCCC

Figure 4.6: λ→FG typing rules for variable-capturing contexts

does for terms and values.

The usual notion of a variable-capturing context (VCC) allows a context to capture

variables occurring free in the term that fills the hole. In Figure 4.6 we define VCCs

for λ→FG, with C , D , E ranging over term contexts and V , W over value contexts. The

form of a well-typed and well-scoped context C is ∆ ` C : 〈〈Γ ` A〉〉VCCB, which says

that term context C has type B in environment ∆ and contains zero or more occurrences

of a hole of type A in an environment Γ. For such a well-typed term context C , there

is an operation, instantiation, denoted by C [M]VCC which fills the holes in the term

context C with M. Instantiation is (yet) another structural traversal, where the only

case of interest is that of the hole constructor, replacing the hole with M:

〈〈−〉〉[M]VCC = M .

By virtue of our de Bruijn encoding, we avoid traditional concerns (as in [Lassen,

1998a; Pitts, 2011, for example]) associated with α-equivalence of VCCs. However,
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VCCs are still a little inconvenient to work with because they force holes to match

exactly the enclosing scope of their context, even up to the ordering of the variables

captured (see the VCCHOLE rule in Figure 4.6).

To manage such concerns we employ a different notion of value-substituting con-

texts (VSCs), where each occurrence of a hole carries an appropriate (well-typed) sub-

stitution, as in rule VSCHOLE below. This ensures that the instantiation operation

C [M]VSC is itself well-typed and well-scoped, and again definable by a simple traver-

sal. Typing judgements for VSCs are the same as for VCCs except we replace the

VCCHOLE rule with the following.

VSCHOLE

θ : Γ � ∆

∆ ` 〈〈θ−〉〉 : 〈〈Γ ` A〉〉VSCA

Instantiation for VSCs is as with VCCs except for the base case, where a hole is filled

by applying the substitution provided.

〈〈θ−〉〉[M]VSC = θ(M)

Every VCC is trivially a VSC, by annotating each hole with an identity substitution.

For the rest of the paper we use unadorned brackets (‘[]’) for instantiation when it is

clear from the context which version of contexts is being used.

Lassen [1998b] defines a notion of variable-capturing context that is slightly dif-

ferent to ours, equivalent to each hole carrying a renaming rather than a general value

substitution. This lies strictly between our VCCs and VSCs, as any renaming is natu-

rally a substitution. Later, we shall see that relations based on either VCCs or VSCs

coincide, and so also with ones based on Lassen’s variant.

4.1.3 Observational Approximation

This section formally defines the notion of observational approximation, alluded to in

the introduction, for λ→FG. Its definition can be traced back to Morris [1968] and builds

on the account of term contexts and substitutions in the previous section.

We begin with a relation transformer lifting any relation on values to a relation on

terms.

Definition 4.4. For closed terms M, N of type A and R a binary relation on closed

values of type A,

M �R �T N , ∀ V. M ⇓A V =⇒ ∃U. N ⇓A U ∧V R U
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This relation transformer is closed under primitive reduction and expansion. We

state and sketch a proof for left-closure under  .

Lemma 4.5 (�−�T left-closed under  ). For all closed terms M, N of type A and R
a binary relation on closed values of type A, the following properties hold.

1. If M P and M �R �T N then P �R �T N

2. If M P and P �R �T N then M �R �T N

Proof. By the definition of �−�T and Lemma 4.3.

We next define a basic relation that drives all our other notions of approximation.

This aims to capture what values can be directly distinguished, without further context

or evaluation.

Definition 4.6 (Ground equivalence). Let uA be the equivalence relation defined on

closed values of type A by:

• V uτ U , V =U , for all V,U : τ,

• λx : A.M uA→B λx : A.N for all M,N

Although this particular relation is symmetric, the definitions we build on it are bi-

ased to give approximation preorders. One reason to factor this out in our development

is the potential for incorporating non-trivial equivalences on ground values (such as for

adding primitive operations and their definitions) in a similar fashion to Johann et al.

[2010] (see Section 4.4 for more on this). In languages where the only primitive effect

is nontermination, e.g. ELLA in Chapter 6, ground equivalence degenerates to the total

relation.

Now we are in a position to define observational approximation in terms of ground

equivalence. First, we have a definition of approximation parametric in the notion of

contexts we consider (VSCs, VCCs,. . .). Let K range over these notions of contexts.

A program is a closed term of arbitrary type. A program K -context is a closed term

K -context ranged over by P ,Q , i.e. · ` P : 〈〈Γ ` A〉〉K B; where for convenience we

usually omit the empty environment.

Definition 4.7 (K Approximation). If M, N are terms of type A in context Γ then

Γ `M ⪍K
A N

asserts that for all program contexts P : 〈〈Γ ` A〉〉K B,

P [M]K �uB�
T P [N]K .
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From all K -contextual approximations, we choose as primary the one with the

largest class of contexts — thereby able to make the finest discrimination between

terms.

Definition 4.8 (Observational Approximation). Let observational approximation, writ-

ten ⪍VSC , be Definition 4.7 instantiated with K = VSC.

Now we can establish our first inclusion of approximations.

Lemma 4.9. If Γ `M ⪍VSC
A N then Γ `M ⪍VCC

A N.

Proof. Assume given terms Γ `M,N : A with Γ `M ⪍VSC
A N and VCC P : 〈〈Γ ` A〉〉VCCB.

From P we can build matching VSC Q where each hole carries the identity substitu-

tion. The result follows by using our VSC approximation with M and N, and the

property that for all terms Γ `M′ : A, P 〈〈M′〉〉VCC ≡ Q 〈〈M′〉〉VSC (proved by induction

on the structure of P ).

Definition 4.7 can readily be extended to an equivalence, denoted by 'K :

Γ `M 'K
A N , Γ `M ⪍K

A N ∧ Γ ` N ⪍K
A M .

Throughout this dissertation, results will be stated for the approximations only but can

be straightforwardly lifted to equivalences [Stark, 1994; Pitts and Stark, 1998].

4.2 Big Steps for a Context Lemma

In this section we define three approximation relations and prove a triangle of impli-

cations which together lead to a context lemma inspired by Milner’s [1977] original

result for combinatory logic.

As noted in Chapter 1, proving observational approximation directly can be ar-

duous owing to the requirement to consider all possible program contexts. Happily,

Milner [1977] showed that for typed combinatory logic it is enough to consider only

contexts where the hole occurs in function position applied to some arguments. The

following definition captures such contexts in our setting.

Definition 4.10 (Applicative Substituting Contexts). The applicative substituting con-

texts (ASCs) are the restricted class of contexts defined by the following inference

rules:
ASCHOLE

θ : Γ � ∆

∆ ` 〈〈θ−〉〉 : 〈〈Γ ` A〉〉ASCA

ASCAPP

∆ `D : 〈〈Γ ` A〉〉ASC(B→C) ∆ `V : B

∆ `D V : 〈〈Γ ` A〉〉ASCC
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SEQ-REFL

M S M

SEQ-V

M S letA V N

M S N[V/x]

SEQ-STEP

M S M′

letA M N S letA M′ N

Figure 4.7: λ→FG iterated reduction with respect to sequencing

Definition 4.11. Let ASC approximation be Definition 4.7 with K = ASC.

Having introduced the required notation we may now formally state the context

lemma we aim to prove in this section. Firstly, in our setting, Milner’s original context

lemma states that for all open λ→FG terms Γ `M,N : A,

Γ `M ⪍ASC
A N ⇐⇒ Γ `M ⪍VCC

A N.

However, we have taken our notion of VSCs as primary, so our context lemma becomes

Γ `M ⪍ASC
A N ⇐⇒ Γ `M ⪍VSC

A N.

Before proving the above result we define some auxiliary notions.

Definition 4.12 (Let-Redexes from Substitution). Let θ be a ∆-closing substitution.

For ∆ `D : 〈〈Γ ` A〉〉VCCB, define Dθ by induction on the size of ∆:

Dθ =

{
D ∆ = ·
(letC θ0 D)(succθ) ∆ = ∆′,C

Dθ represents a new (closed) VCC obtained from D by constructing a sequence of

let-redexes on the outside of D from the substitution θ. For ∆ `M : A, let Mθ denote

the analogous operation for constructing a closed term from M and θ.

Figure 4.7 defines iterated reduction with respect to term sequencing. The relation

satisfies analogous properties to Lemmas 4.3 and 4.5. Then we have the obvious result:

Lemma 4.13. For ∆ `M : A, and ∆-closing substitution θ, then we have

Mθ S
θ(M)

Definition 4.14. Define the operation ? : ASC→VCC, which transforms a closed ASC

into a closed VCC, by induction on the structure of the ASC:

?(〈〈θ−〉〉) = 〈〈−〉〉θ

? (P V ) = ?(P ) V
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where the ASCAPP case uses our syntactic sugar, extended to K contexts.

Lemma 4.15. For all Γ `M : A, ∆ ` C : 〈〈Γ ` A〉〉VCCB, and ∆-closing substitutions,

θ, we have

(C θ)[M]≡ (C [M])θ

Proof. By induction on the size of the environment ∆.

Lemma 4.16. If Γ `M ⪍VCC
A N then Γ `M ⪍ASC

A N.

Proof. Assume given terms Γ `M,N : A, Γ `M ⪍VCC
A N and ASC P : 〈〈Γ ` A〉〉ASCB.

The proof proceeds by induction on the structure of P .

If P = 〈〈θ−〉〉, for some Γ-closing substitution θ, then the result follows from Lem-

mas 4.15 and 4.13, using �−�T ’s left- and right-closure under  S .

Otherwise, P = Q V , for some Q : 〈〈Γ ` A〉〉ASC(B→C) and V : B. The result

follows by applying the approximation assumption to ?(P ) (Definition 4.14) and using

�−�T ’s left- and right-closure under  S .

Lemmas 4.9 and 4.16 give one direction of our context lemma for λ→FG. Not surpris-

ingly, the other direction is more challenging. This is where we adopt the triangulation

proof method described earlier. That is, we concern ourselves with establishing the

following cycle of implications.

⪍VSC ⪍VCC ⪍ASC

./

The contextual approximations for VSCs, VCCs and ASCs form the apex of the tri-

angle, while . is applicative approximation and / is logical approximation, both

to be defined shortly. We have already shown the implications within the dotted el-

lipse (Lemmas 4.9 and 4.16), and the next two sections will address those forming the

triangle.

4.2.1 Applicative Approximation

The definition of applicative approximation roughly follows Stark [1994]. It is a char-

acterisation of approximation which is inductive on the type structure, and otherwise

analogous to Gordon’s [1994] coinductive typed applicative similarity.
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Definition 4.17 (Applicative Approximation). We define applicative approximation

. using two mutually recursive definitions, one for values and one for terms.

Define the relation V1 .val
A V2 for closed values V1,V2 inductively on the structure of

type A:

APPGNDAPX

V1 uτ V2

V1 .
val
τ V2

APPABSAPX

∀ V : A. M1[V ].trm
B M2[V ]

λA M1 .
val
A→B λA M2

Define the relation M1 .trm
A M2 for closed terms M1,M2 of type A by the following

definition:

M1 .
trm
A M2 , M1 �.

val
A �

T M2

Just like for observational approximation, applicative approximation can be stated

for open terms. We employ simultaneous substitutions to close over the environment.

Definition 4.18 (Open Applicative Approximation). Given Γ `M1 : A and Γ `M2 : A,

we say that M1 applicatively approximates M2, written Γ `M1 .A M2, if and only if

for all Γ-closing substitutions θ we have θ(M1).A θ(M2).

A relationship between ASC approximation and applicative approximation can be

established from which we obtain one side of the triangle.

Theorem 4.19. Γ `M ⪍ASC
A N =⇒ Γ `M .trm

A N

Proof. By induction on the type A.

Lemma 4.20. Observational approximation implies applicative approximation:

Γ `M ⪍VSC
A N =⇒ Γ `M .trm

A N

Proof. By Lemmas 4.9 and 4.16 with Theorem 4.19.

4.2.2 Logical Approximation

Logical approximation differs with respect to applicative approximation only in its

handling of functions.
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LOGAPXIFTHENELSE

B/val
bool B′ L/trm

A L′ R/trm
A R′

if B then L else R/trm
A if B′ then L′ else R′

LOGAPXAPP

F /val
A→B G U /val

A V

F U /trm
B G V

LOGAPXLET

M /trm
A M′ A ` N /trm

B N′

letA M N /trm
B letA M′ N′

Figure 4.8: / is closed under the compound term formers

Definition 4.21 (Logical Approximation). Define logical approximation by the mutu-

ally recursive relations /val and /trm. The relation V1 /val
A V2 for closed values V1,V2

is defined recursively on the structure of type A:

LOGGNDAPX

V1 uτ V2

V1 /
val
τ V2

LOGABSAPX

∀ V1,V2. V1 /
val
A V2 =⇒ M1[V1]/

trm
B M2[V2]

λA M1 /
val
A→B λA M2

The relation M1 /trm
A M2 for closed terms M1,M2 of type A is defined using �−�T and

/val:

M1 /
trm
A M2 , M1 �/

val
A �

T M2

To extend logical approximation to open terms we define the notion of logical

approximation of substitutions.

Definition 4.22 (Logical Approximation of Substitutions). For Γ-closing substitutions,

θ,θ′, θ /
Γ

θ′ holds if and only if, for all k : (A ∈ Γ), θk /A θ′k. For θ,θ′ : Γ � ∆,

∆` θ/
Γ

θ′ holds if and only if, for all ∆-closing substitutions, θ1,θ2 such that θ1/∆
θ2

holds then θ1 ◦θ/
Γ

θ2 ◦θ′ holds.

Definition 4.23 (Open Logical Approximation). Assume given Γ `M1 : A and Γ `M2 : A,

then M1 logically approximates M2, written Γ `M1 /A M2, if and only if, for all Γ-

closing substitutions θ1,θ2 if θ1 /Γ
θ2 then θ1(M1)/A θ2(M2).

Logical approximation is closed under primitive reduction, and expansion.

Lemma 4.24 (/trm left-closed under  ). If M P and M /trm
A N then P /trm

A N,

and if M P and P/trm
A N then M /trm

A N.
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Lemma 4.25 (/trm right-closed under  ). If N P and M /trm
A N then M /trm

A P,

and if N P and M /trm
A P then M /trm

A N

The following lemma follows directly from the above definition of open logical

approximation.

Lemma 4.26. If Γ `M1 /trm
A M2 and ∆ ` θ1 /Γ

θ2 then ∆ ` θ1(M1)/trm
A θ2(M2).

Lemma 4.27 (Logical Apx. Term Closure). Logical approximation is closed under

the compound term formers (Figure 4.8).

Proof. By Lemmas 4.24 and 4.25, and the LET rule for big-step evaluation.

Lemma 4.28 (Fundamental Theorem of Logical Relations). Logical approximation is

reflexive:

1. Γ `V /val
A V

2. Γ `M /trm
A M

Proof. Perform simultaneous induction on the typing derivations Γ `V : A and Γ `M : A

using Lemma 4.27.

4.2.3 Completing the Triangle

It remains to establish the other two implications of the triangle. First, we link ap-

plicative and logical approximation with the following generalised transitivity prop-

erty [Pitts, 2005; Pitts and Stark, 1998]:

Lemma 4.29. The following transitivity properties hold:

1. If U /val
A V and V .val

A W then U /val
A W

2. If M /trm
A N and N .trm

A P then M /trm
A P

Proof. By simultaneous induction on the structure of type A.

The above transitivity property is similar to the same property for Howe’s [1989]

precongruence candidate, R H , given a transitive relation R , we compose with R on

the right:

U R H V ∧ V R W =⇒ U R H W (Howe)
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whereby setting R H ,/val and R ,.val , we see the connection to our Lemma 4.29.

Note, however, our property is also provable if we switch the order of /val and .val ,

whereas, to our knowledge, the precongruence candidate is always defined such that

(Howe) is the only valid formulation. We discuss Howe’s method further in Sec-

tion 4.4.2.

Using the Fundamental Property of Logical Relations and Lemma 4.29, we obtain

the base implication of our triangle.

Lemma 4.30. Applicative approximation implies logical approximation:

Γ `M .trm
A N =⇒ Γ `M /trm

A N

Now we establish a relationship between observational and logical approximations

by first showing that logical approximation is closed under all VSCs.

Lemma 4.31. If Γ `M1 /trm
A M2 and ∆ ` C : 〈〈Γ ` A〉〉B then,

∆ ` C [M1]/
trm
B C [M2]

Proof. By induction on the derivation of ∆ ` C : 〈〈Γ ` A〉〉B using Lemma 4.27 for the

compound term formers, Lemma 4.26 for the VSCHOLE case, and Lemma 4.28 for the

case where there is no hole in C .

Lemma 4.32. Logical approximation implies observational approximation:

Γ ` M1 /
trm
A M2 =⇒ Γ `M1 ⪍VSC

A M2

Proof. Instantiate the context C of Lemma 4.31 with program context · ` P : 〈〈Γ ` A〉〉B
from the definition of VSC approximation.

We can now complete the cycle, which in turn yields the desired context lemma:

that applicative contexts are sufficient to characterise observational approximation.

Theorem 4.33 (Big-Step Triangulation). Observational, applicative, and logical ap-

proximation coincide.

Proof. Using Lemmas 4.20, 4.30 and 4.32.

Corollary 4.34 (Context Lemma). For all open λ→FG terms Γ `M,N : A,

Γ `M ⪍ASC
A N if and only if Γ `M ⪍VSC

A N.
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4.3 Extension to Frame Stacks

Since Milner’s original context lemma, a number of similar results have appeared for

more complex calculi. In particular, for call-by-value calculi with effects (such as state)

applicative contexts are not sufficient: such contexts to do not account for manipulation

of state cells during reduction to a value. Instead, one requires a more powerful notion

known as Closed Instantiations of Uses (CIU) approximation due to Mason and Talcott

[1991].

In this section we consider a different triangle of approximations involving frame

stacks [Pitts, 2005]. We parallel the ReFS proofs of Pitts and Stark [1998] recasting the

applicative and logical approximations described in Section 4.2 in terms of frame stack

evaluation. First though, we define CIU contexts and relate them to VCCs just like that

for ASCs. We omit some proofs since they follow similar reasoning. For an alternative

account of a similar development, the reader may wish to consult the chapter by Pitts

[2005] in Pierce [2004].

Definition 4.35 (CIU Contexts). Let CIU contexts be the restricted class of contexts

defined by the following inference rules:

CIUHOLE

θ : Γ � ∆

∆ ` 〈〈θ−〉〉 : 〈〈Γ ` A〉〉CIUA

CIUAPP

∆ `D : 〈〈Γ ` A〉〉CIUB ∆,B ` N : C

∆ ` letB D N : 〈〈Γ ` A〉〉CIUC

It is worth stressing the differences between ASCs and CIU contexts. ASCs consist

of a well-typed and well-scoped hole applied to a sequence of closed values. CIU

contexts form a nested sequence of let bindings (culminating in the hole) with a term

body.

Definition 4.36 (CIU Approximation). Let CIU approximation be Definition 4.7 with

K = CIU.

Definition 4.37. Define the operation � : CIU→VCC, which transforms a closed CIU

context into a closed VCC, by induction on the structure of the CIU context:

�(〈〈θ−〉〉) = 〈〈−〉〉θ

�(let P N) = let �(P ) N

Lemma 4.38. If Γ `M ⪍VCC
A N then Γ `M ⪍CIU

A N.
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Well-Typed Syntax

NILFRMTY

· ` Id : A( A

CONSFRMTY

· ` S : B(C A ` N : B

· ` S◦A N : A(C

Semantics

NILVALUE

· `V : A

〈Id,V 〉 ↓A V

CONSVALUE

〈S,N[U ]〉 ↓B V

〈S◦A N,U〉 ↓B V

PRIMRED

M M′ 〈S,M′〉 ↓A V

〈S,M〉 ↓A V

SEQ

〈S◦A N,M〉 ↓B V

〈S, letA M N〉 ↓B V

Figure 4.9: λ→FG frame stack syntax and semantics

4.3.1 Frame Stack Properties

In this section, we establish some properties of frame stacks, a well-typed construct

satisfying the inference rules in Figure 4.9. A frame stack is a stack consisting of open

terms each containing exactly one free variable. The frame stack type A( B denotes

a stack with argument type A and return type B. For example, CONSFRMTY says that

if we have a frame stack S of type B(C, expecting an argument of type B, and a term

N of type B with a free variable of type A then we can form the frame stack S◦A N of

type A(C, expecting an argument of type A. The argument to a frame stack mimics

that of a hole in a closed VCC.

Evaluation of a frame stack is with respect to a focussed term whose type corre-

sponds to the argument type of the frame stack. For readability we mostly suppress

typing annotations on frame stack evaluation, just as for big-step evaluation.

Define the (left) action over a frame stack, @, to be the operation that produces a

term given a frame and a closed term to fill its hole:

Id@M = M

(S◦A N)@M = S@(letA M N)

We may extend the @ action to operate on closed CIU contexts instead of terms, de-

noted by − 〈〈@〉〉 −, replacing the case for CONSFRMTY above with:

(S◦A N)〈〈@〉〉P = S〈〈@〉〉(letA P N)
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The type of the holes in the context are left unchanged by the operation. The fol-

lowing lemma establishes that the action over a frame stack commutes with context

instantiation.

Lemma 4.39. (S〈〈@〉〉P )[M]CIU = S@(P [M]CIU)

Proof. By induction on the frame stack S.

The following lemma relates frame stack and big-step evaluation using the action

over a frame stack.

Lemma 4.40. 〈S,M〉 ↓V ⇐⇒ S@M ⇓ V .

Proof. For⇐=, the proof follows by the properties:

1. M ⇓ V =⇒ 〈Id,M〉 ↓V

2. 〈Id,S@M〉 ↓U =⇒ 〈S,M〉 ↓U

where (1) is by induction on the derivation of M ⇓ V and (2) is by induction on S.

For =⇒, the proof follows from a standardisation argument [Takahashi, 1995]:

evaluation can be decomposed into evaluation of a focussed term M to value W and

evaluation of the surrounding context S filled with W .

3. S@M ⇓ V =⇒ ∃W.M ⇓W ∧S@W ⇓ V

4. M ⇓W ∧S@W ⇓ V =⇒ S@M ⇓ V

Both are proved simultaneously by induction on S.

We define a relation transformer that lifts a relation on values to a relation between

frame stack configurations 〈−,−〉.

Definition 4.41. For frame stacks S1,S2 : A( B, closed terms M1,M2 : A, and binary

relation R on closed values of type B, relation S1,M1 �R �F S2,M2 holds if and only

if

∀ V. 〈S1,M1〉 ↓V =⇒ ∃U. 〈S2,M2〉 ↓U ∧V R U .
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4.3.2 Applicative Frame Approximation

Having set up frame-stack machinery, we move on to the associated approximation

relations. In Sections 4.2.1 and 4.2.2 we defined value and term relations simultane-

ously, using �−�T to pass from values to terms. In a CIU setting, frame stacks now

provide a bridge between value relations and term relations. This is most obvious with

logical approximations, where all three are defined simultaneously. For applicative

approximation, our results need only the term relation.

Definition 4.42 (Applicative Frame Approximation). Term M1 applicatively frame ap-

proximates M2 at type A if evaluation of M1 in any appropriately-typed frame stack S

approximates the evaluation of M2 in the same S.

M1 〈.〉trm
A M2 , ∀S : A( B. S,M1 �uB�

F S,M2

Approximation for values mirrors that of Definition 4.17, building on this term approx-

imation; while two frame stacks are related based on their evaluation at all values. We

omit the formal descriptions as we do not need them further.

Remark 4.43. We have retained the terminology of Section 4.2 for our extension to

frame stacks, uniformly referring to the relation occupying the lower-right corner of

(both instances of) the triangle as the “applicative” relation. Our terminology is in-

spired by Milner’s original applicative relation which relates functions by applying

them to an identical sequence of arguments. However, our usage of the term is more

abstract than his technical definition. In particular, we include Definition 4.42 under

the term “applicative” which is not considered an applicative relation in Milner’s sense

due to the ability to test functions using a larger collection of contexts, e.g. contexts

where the functions being related may themselves be arguments. Whilst for λ→FG, this

increase in testing contexts does not affect our discriminatory power, the introduction

of effects and handlers is enough to render Milner’s applicative contexts unsuitable for

reasoning about observational approximation, and justifies the use of the more pow-

erful frame stacks formulation. See Section 6.5.4 for an extended discussion in the

setting of our effectful ELLA calculus. Despite these differences, we opt to retain the

logical/applicative terminology for describing the situation in an abstract sense. The

logical notion tests functions with related frames and values. Whereas, the applicative

notion tests functions with identical frames and values (cf. Section 2.3). That is, our

usage of the term “applicative” is primarily to distinguish it from the logical notion

which recursively appeals to itself when relating terms and values.
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Lemma 4.44. If Γ `M ⪍CIU
A N then Γ `M 〈.〉trm

A N

Proof. Assume a Γ-closing substitution θ with 〈S,θ(M)〉 ↓ V for some S and V . By

Lemma 4.40, S@θ(M) ⇓ V holds. In the CIU approximation assumption, set the con-

text P to be S〈〈@〉〉〈〈θ−〉〉. It follows that there exists a value W such that

(S〈〈@〉〉〈〈θ−〉〉)[N]CIU ⇓W and V u W

The result follows by Lemmas 4.39 and 4.40.

Lemma 4.45. Observational approximation implies applicative frame approximation.

Proof. By Lemmas 4.9, 4.38 and 4.44.

4.3.3 Logical Frame Approximation

We now define the frame stack analogue to logical approximation from Section 4.2.2,

using >>-lifting / biorthogonality for logical relations as demonstrated by Pitts and

Stark [1998].

Definition 4.46 (Logical Frame Approximation). Logical frame approximation is de-

fined by three mutually recursive relations on pairs of (closed) values, terms and stacks.

Define V1 〈/〉val
A V2 for closed values V1,V2 inductively by the structure of type A:

LOGFRMGNDAPX

V1 uτ V2

V1 〈/〉val
τ V2

LOGFRMABSAPX

∀ V1,V2. V1 〈/〉val
A V2 =⇒ M1[V1] 〈/〉trm

B M2[V2]

λA M1 〈/〉val
A→B λA M2

The relation 〈/〉trm is defined by the>>-lifting of 〈/〉val over 〈/〉stk: for closed terms

M1 and M2, approximation M1 〈/〉trm
A M2 is defined to be

∀S1,S2. S1 〈/〉stkA(B S2 =⇒ S1,M1 �uB�
F S2,M2

where the approximation S1 〈/〉stkA(B S2 for frame stacks S1 and S2 is defined as

∀ V1,V2. V1 〈/〉val
A V2 =⇒ S1,V1 �uB�

F S2,V2 .

As with applicative frame approximation, 〈/〉trm uses the u relation to relate the final

values. In the definition of 〈/〉stk, we implicitly lift the value arguments to terms.

As in Lemmas 4.24, 4.25, and 4.31, logical frame approximation is closed under

primitive reduction and expansion, and closed under all VSCs.
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Lemma 4.47 (Logical Frame Apx. Lifts). Logical frame approximation is closed un-

der the compound term formers.

Proof. The only deviation from the proof of Lemma 4.27 is for let, where we extend

the approximation of stacks from S1 〈/〉stkB(C S2 to S1 ◦A N 〈/〉stkA(C S2 ◦A N′.

Lemma 4.48. Logical frame approximation is reflexive:

1. Γ `V 〈/〉val
A V

2. Γ `M 〈/〉trm
A M

3. S 〈/〉stkA S

Proof. For (1) and (2) the proof is similar to Lemma 4.28 using Lemma 4.47. For (3),

perform induction on the well-typed derivation of S using (2) for CONSVALUE.

Lemma 4.49. If Γ `M1 〈/〉A M2 and ∆ ` C : 〈〈Γ ` A〉〉B then

∆ ` C 〈〈M1〉〉 〈/〉trm
B C 〈〈M2〉〉

4.3.4 Establishing the Triangle

We can now proceed to the following analogue of Lemma 4.32.

Lemma 4.50. Logical frame approximation implies observational approximation:

Γ `M 〈/〉trm
A N =⇒ Γ `M ⪍VSC

A N .

Proof. By definition, using Lemma 4.49.

Lemma 4.51. Applicative and logical frame approximation satisfy the following tran-

sitivity property:

If M 〈/〉trm
A N and N 〈.〉trm

A P then M 〈/〉trm
A P.

Proof. By induction on the structure of type A.

We establish the final implication of the triangle: that applicative frame approxi-

mation implies logical frame approximation.

Lemma 4.52.
Γ `M 〈.〉trm

A N =⇒ Γ `M 〈/〉trm
A N
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Proof. By Lemmas 4.48 and 4.51.

Once again, all three notions coincide.

Lemma 4.53 (Frame Stack Triangulation). Observational, applicative frame and log-

ical frame approximation coincide.

Proof. Using Lemmas 4.45, 4.52 and 4.50.

For a simply-typed lambda calculus like λ→FG it is not in fact essential to consider

CIU approximation — we already know from Section 4.2 that applicative contexts are

enough to distinguish terms. Differences, though, arise in any language with features

like state, exceptions, or other effects that give program contexts greater discriminat-

ing power. In these cases we expect the frame-stack approach to be appropriate, and

note that the triangulation proofs are reassuringly similar in shape when moving from

Milner’s original context lemma to a CIU version. In particular, in Chapter 6 we gener-

alise frame stacks to handler stacks to extend our development to an effectful calculus

supporting algebraic effects and handlers.

4.4 Related Work

There is a considerable body of work concerning program equivalence results. We

highlight publications which had a direct influence on our development, and those

closely related in terms of pertaining to completeness results, or the formalisation of

such results in theorem provers.

4.4.1 Triangulation

Stark [1994] showed a triangle of relations coincide for the ν-calculus and proved a

context lemma for a variant of Milner’s result which applied the hole to a test function.

However, this special form of context lemma is proved by analysing the process of

reduction and the particular forms for closed expressions in the calculus. In contrast,

our fine-grained calculus is simple enough for consideration of applicative contexts à

la Milner [1977] to suffice, and hence the context lemma follows from the triangulation

result.

Pitts and Stark [1998] prove a context lemma for ReFS, a functional language with

local state. Their use of the triangulation technique inspired this work and our Sec-

tion 4.3 essentially isolates their approach, free from considerations of state relations.
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However, our formal approach gives a more satisfactory account of contexts, their

scope and the variable capture involved when instantiating a hole with a term. In par-

ticular, there is no requirement for a side-condition in our analogue (Theorem 4.49)

of their Theorem 4.9 since by construction every occurrence of a hole (in a VSC) is

paired with a well-typed and well-scoped substitution.

Pitts [2005] developed a triangle for an ML-like language, but in contrast to ReFS,

it is based on an extension of Howe’s relational approach [Gordon, 1994; Lassen,

1998a]. The relational approach for representing contexts is favoured in order to miti-

gate the difficulties involved with concrete contexts and their potential capture of free

variables of a term. The folklore belief is that such issues are especially difficult to

handle in the setting of machine checked proofs. On the contrary, a careful choice of

representation and appropriate use of state-of-the-art technology makes their represen-

tation routine. Moreover, the relational approach relies on an inductive characterisa-

tion in terms of the language syntax. Some of these rules involve the use of variables

from the context. It is not clear how to formalise such definitions without having to

deal with issues of naming and α-convertibility; issues handled automatically by the

ACMM framework.

Johann et al. [2010] prove a CIU-like context lemma result in a general operational

setting for a polymorphic calculus extended with algebraic effects. Like us, they pa-

rameterise their approximations with respect to a notion of ‘basic’ preorder for making

observations on ground type computations. Their expressive setting provides justifica-

tion for the parameterisation, permitting different choices of basic preorder to give a

semantics with respect to different collections of effects. Their calculus does not sup-

port handlers for algebraic effects, thus the basic preorders can be seen as providing

the sole interpretation for a given effect.

4.4.2 Howe’s Method

Howe [1989] developed a general method for proving coincidence of applicative bisim-

ilarity and observational equivalence for a broad class of (untyped) lazy languages

and subsequently extended the method to support call-by-value calculi [Howe, 1996].

A key element of the approach is to introduce a relation, called the ‘precongruence

candidate’, which bridges the gap between the applicative and observational notions.

The technique has been shown to extend to other languages, including a typed meta-

language with recursive types [Gordon, 1994] and extensions of PCF [Pitts, 1997;
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Lassen, 1998a]. Howe’s method does not reason explicitly about reduction sequences

in contrast to others [Mason and Talcott, 1991; Stark, 1994]. Instead, the precongru-

ence candidate is sufficient to show that the relation is closed under all contexts, treat-

ing contexts abstractly. Our approach is a middle ground in that we reason explicitly

about the structure of contexts but do not explicitly analyse reduction sequences.

Note, that whilst Gordon [1994] employs Howe’s method for showing coincidence

of applicative bisimilarity and observational equivalence, he separately proves a con-

text lemma result using a variation on Milner’s [1977] careful analysis on reduction

sequences and dissection of terms. Pitts [2011] has shown Howe’s method can also be

used to prove such context lemmas. Based on this observation and our existing results,

we conjecture that the triangulation method is a way to understand both inductive and

coinductive characterisations of observational equivalence. It is future work to inves-

tigate the relationship between the triangulation technique described here and Howe’s

method.

4.4.3 Formalisation

We contribute a concrete instance of using ACMM in the study of observational ap-

proximation and its coincidences. We see our work as a solution to another challenge

problem in the broader context of mechanising programming language meta-theory, in

the sense of Aydemir et al. [2005], and more recently, Abel et al. [2019]. The initial

proposal by Aydemir et al. focussed on basic meta-theory of System F with subtyping,

such as type soundness, and its solutions highlight the various representation choices

available [Leroy, 2007; Aydemir et al., 2008; Vouillon, 2012]. In this context, ACMM

is a particular approach for addressing these issues in a uniform way, allowing the fo-

cus to shift to more challenging meta-theoretic results, e.g. the strong normalisation

proofs studied by Abel et al. [2019], or context lemma results presented in this chapter.

Moreover, the extension of ACMM by Allais et al. [2018] to a framework operating

over generic descriptions of syntaxes with binding enables significant re-use of ba-

sic ‘infrastructure’ lemmas; properties regarding weakening and substitution, and their

various compositions.

Ambler and Crole [1999] formalise program equivalence for a call-by-name λ-

calculus using applicative bisimulation and Howe’s method in Isabelle/HOL using a

first-order de Bruijn representation. The authors note the difficulty in proving proper-

ties of weakening and substitution, particularly for the relations between terms. Our
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statement of analogous properties are simplified by virtue of our well-typed and-scoped

encoding of terms. Furthermore, the proofs of such properties are simplified by lever-

aging a weak HOAS representation for defining the semantics of such operations.

Momigliano et al. [2002] replay Ambler and Crole’s [1999] development as an

elaborate case study for the Hybrid system [Ambler et al., 2002], a meta-language

defined on top of Isabelle/HOL. The development does not include a proof of sub-

stitutivity for Howe’s candidate relation due to difficulties in the encoding. Hybrid

allows the representation of object languages by HOAS such that they admit principles

of (co)induction. The underlying encoding of Hybrid within Isabelle/HOL carves out

acceptable object language HOAS terms by translation to a subset of de Bruijn ex-

pressions. This representation yields proofs of the desired induction principles for the

object language(s).

In BELUGA, Momigliano et al. [2018] formalise a proof of pre-congruence for sim-

ilarity using Howe’s method in the setting of a call-by-name λ-calculus. The authors

take full advantage of an extension of LF [Harper et al., 1993] types, which support

first-class contexts and simultaneous substitutions, provided by BELUGA’s underlying

contextual modal type theory [Pientka, 2008]. Their development does not include

a context lemma result, omitting the proof of coincidence between observational ap-

proximation and similarity. Indeed, their HOAS approach does not support any kind

of variable-capturing contexts, while the authors note Beluga requires a non-trivial ex-

tension to encode observational approximation using the relational approach [Lassen,

1998b; Pitts, 2011].
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Table 4.1: Selected notation used in the chapter and corresponding AGDA definitions

Concept Notation Reference Agda Definition

Simultaneous substitution θ(−) Definition 4.1 *-Val

Lookup in substitution θk Definition 4.2 var

Successor substitution succ− Definition 4.2 succ

Lift value relation to terms by evaluation �−�T Definition 4.4 [ ]ˆT

Ground equivalence u Definition 4.6 gnd-eqv

Variable-capturing contexts 〈〈− ` −〉〉VCC Figure 4.6 VCC〈〈 ` 〉〉

Observational approximation ⪍VSC Definition 4.8 vsc-apx

Applicative substituting contexts 〈〈− ` −〉〉ASC Definition 4.10 ASC〈〈 ` 〉〉

ASC approximation ⪍ASC Definition 4.11 asc-apx

Let-redexes from substitution Dθ Definition 4.12 VCC-sub

Transform ASC to VCC ? Definition 4.14 asc-to-vcc

Applicative approximation . Definition 4.17 app-apx0

Open applicative approximation Γ `M .A N Definition 4.18 app-apx

Logical approximation / Definition 4.21 log-apx0

Open logical approximation Γ `M /A N Definition 4.23 log-apx

CIU contexts 〈〈− ` −〉〉CIU Definition 4.35 CIU〈〈 ` 〉〉

CIU Approximation ⪍CIU Definition 4.36 ciu-apx

Transform CIU Contexts to VCC � Definition 4.37 ciu-to-vcc

Frame stacks relation transformer �−�F Definition 4.41 [ ]ˆF

Applicative Frame Approximation 〈.〉 Definition 4.42 app-frm-apx0

Logical Frame Approximation 〈/〉 Definition 4.46 log-frm-apx0



Chapter 5

A Logic for Relational Reasoning

The previous chapter demonstrated the triangulation proof method for λ→FG, a simply-

typed λ-calculus without effects. Since we claim triangulation is a general technique,

we want to extend our results to a calculus supporting computational effects. In partic-

ular, Chapter 6 presents ELLA, a FRANK-inspired calculus with first-class support for

effect handlers.

Recall that handlers can be described as either deep or shallow. Deep handlers are

automatically reinvoked on the continuations of handled computations, whereas shal-

low handlers are not. FRANK (hence also ELLA) handlers are shallow so the handling

of subsequent effects is expressed using general recursion.

To extend triangulation to such a calculus, we might think to follow the recipe laid

out in Chapter 4, defining the relations recursively on the structure of types. However,

in the presence of general recursion we need to be a bit more careful. Ultimately,

we want to show both structural relations are compatible with the term formers of the

calculus, especially the logical relation 1. In particular, given the recursive function

rule:
REC

Γ,A→ B,A `M : B

Γ ` recA M : A→ B

compatibility amounts to showing it is preserved by the logical relation /:

Γ,A→ B,A `M1 /
trm
B M2

Γ ` recA M1 /
val
A→B recA M2

(?)

1Compatibility of the applicative notion follows from its connection to the logical notion; the base
implication of the triangle. Compatibility of the logical relation implies soundness w.r.t. observational
approximation.

95
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The antecedent of (?) substitutes the recursive function into the respective bodies.

Naı̈vely appealing to the definition of/val at the type A→ B does not get us anywhere:

we would need to show the substitutions are approximate; the exact approximation we

are trying to show!

Instead, we would first prove an unwinding theorem [Pitts and Stark, 1998], a

syntactic analogue to the denotational proof principle of fixed point induction: that

the observable behaviour of a recursive function is completely captured by its finite

unwindings. Second, we prove (?) holds for all finite unwindings by induction on the

number of unwindings; the base case of a non-recursive function follows from the defi-

nition of/val at function type. Hence, we may deduce (?) for recursive functions using

the unwinding theorem. Pitts and Stark [1998] have proven an unwinding theorem for

the ReFS calculus, which is subsequently used to show the compatibility property for

their operational logical relation. See also Pitts [2005] for a similar account.

While we have strong reason to believe an unwinding theorem would suffice for

ELLA, we pursue an alternative approach known as step-indexing. This approach in-

volves augmenting the structural approximation relations with a natural number counter

(the eponymous step-index) representing for how many steps of computation the ap-

proximation holds. Now our relations are defined by a double recursion: first on the

structure of types then on the step-index. Using explicit steps, we can resolve the

dilemma introduced by general recursion quite simply, by decrementing the step-index

in the premiss of the rule for function types. We choose the step-indexing approach

because it is mathematically straightforward yet scales remarkably well to support

reasoning about other recursive features, including recursive types and general ref-

erences [Ahmed, 2004, 2006]. So the literature on step-indexing suggests how we

might extend the forthcoming formalism for ELLA to the full Frank language, which

has recursive types via algebraic datatypes, and ML-style references. In contrast, un-

winding does not scale to support these features; further syntactic analogues of de-

notational methods are required and these techniques can become rather complex,

e.g. syntactic minimal invariance for supporting recursive types [Birkedal and Harper,

1999]. Furthermore, there are several formalised λ-calculus developments based on

step-indexing [Appel et al., 2007; Jung et al., 2018b; Polesiuk, 2017] whilst, to our

knowledge, no such developments based on unwinding theorems. Without a point of

comparison, we cannot claim step-indexed relations are more amenable to formalisa-

tion than proving an unwinding theorem but their scalability is certainly advantageous

given the desire for mechanised metatheory to be extensible.
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Step-indexed propositions satisfy a monotonicity condition: if a property holds

for n steps of computation then it holds for any m < n. For a good intuition as to

why this makes sense, imagine we are trying to distinguish terms by their behaviour.

If two terms cannot be distinguished by n steps of computation then they certainly

will not be distinguished by any m < n. While step-indexing is mathematically quite

simple, proofs involving step-indexed relations can become marred in tedious step-

index arithmetic.

To alleviate the theorist of this burden, there has been a lot of work recently on

modal logics to hide the index manipulation within proofs [Appel et al., 2007; Dreyer

et al., 2011; Jung et al., 2018b]. These logics deal with implicitly step-indexed propo-

sitions and silently thread the step-index through formulae. In places where the index

must be decremented, the later modal operator . is used with the semantics that if a

proposition P is true at index n then . P is true at index n+ 1. The later modality

satisfies the following induction principle, called Löb induction due to its connection

to the Gödel-Löb logic of provability [Appel et al., 2007; Nakano, 2001]:

LÖB

.P ` P

` P

which says that to prove a proposition holds at some index n > 0 we may assume it

holds at n− 1. The induction principle has no base case because all propositions are

trivially true at index 0; being the behaviour one can observe in zero computation steps.

Coupled with the monotonicity condition, we obtain an induction principle which al-

lows one to assume a formula holds at all steps less than the current one in order to

prove the formula holds ‘now’, i.e. at the current index. The induction principle has a

coinductive flavour to it: in order to prove something is true ‘now’ it suffices to prove

it holds ‘now’ under the assumption it holds ‘later’.

A number of useful high-level reasoning properties can be derived using Löb induc-

tion. In contrast, the unwinding theorem does not provide such a high-level induction

principle. Typically you are forced to reason directly on termination derivations which

are subtly different for particular example approximations.

To abstract away the threading of step-indices through our proofs, we define a logic

to hide step-indices, taking inspiration primarily from the LSLR logic by Dreyer et al.

[2011] and complete ordered families of equivalences (COFEs) by Di Gianantonio

and Miculan [2003]. Another noteworthy logic in this area is IRIS [Jung et al., 2018b]

which has been used to verify a variety of properties for several higher-order imperative
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languages, e.g. studies by Jung et al. [2018a] and Timany and Birkedal [2019].

Since ELLA is a monomorphic calculus, we do not require quantification over the

interpretation of types, as would be required in calculi supporting polymorphism, e.g.

System F, or even FRANK which, in contrast to System F, only supports prenex poly-

morphism. We do, however, require fixed-point predicates to be able to define the

applicative and logical approximations which have recursive definitions. Thus, we

may restrict our logic to first-order intuitionistic logic extended with fixed-point pred-

icates and the . modality for manipulating the step-index. Both IRIS and LSLR are

more sophisticated logics than the fragment we consider, being based on higher-order

and second-order logic, respectively.

5.1 A Modal Logic for Step-Indexed Propositions

In the previous chapter, our reasoning for λ→FG was conducted within a Martin-Löf

logical framework. Using step-indexing to extend the approach to ELLA, we define a

modal logic called FOLµ. which implicitly carries the step-indexing through formulae.

Our logical and applicative notions, and our reasoning principles are embedded within

FOLµ.. FOLµ. is defined with respect to a multi-sorted signature Ω. Therefore, FOLµ.

is independent of ELLA or any other calculus we choose to study. In Chapter 6, we

instantiate the signature to ELLA types, terms and stacks, and functions and relations

over them.

Definition 5.1. A multi-sorted signature Ω consists of:

• a collection S of sorts S ;

• a collection of typed function symbols f : S → S ;

• a collection of typed relation symbols A : S .

where S denotes a sequence of zero or more sorts from S.

The relation symbols occurring in the signature are atomic (hence the choice of

metavariable) in the sense that they are independent of step-indexing.

We present the grammar for FOLµ. in Figure 5.1. Note that we implicitly inject

applications A t of atomic relations A to terms t into step-indexed propositions φ.

Additionally, we may define (implicitly) step-indexed predicates π by abstraction over

a proposition, or by the fixed-point construction, µ. Later we introduce constraints
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(propositions) φ,ψ ::= π t | A t | φ∨ψ | φ∧ψ | . φ

| φ =⇒ ψ | ∀x : S . φ | ∃x : S . φ

(predicates) π ::= P | (x : S).φ | µP : S .π

Figure 5.1: Syntax for FOLµ.

on the occurrence of predicate variables P in fixed-point predicates to ensure such

predicates are well-founded.

We define FOLµ. directly by the semantics of a shallow embedding in our meta-

language MLUTT introduced in Chapter 2. Recall earlier we stated that step-indexed

propositions must satisfy a monotonicity condition. We can leverage our expressive

meta-language to enforce that all step-indexed propositions are accompanied by a

proof that they are monotone. We denote step-indexed propositions using φ and ψ,

as in our informal grammar. The collection of such propositions which are monotone

is defined in MLUTT to be IProp using a Σ-type as follows.

IProp, Σφ : N→ Set .monotone(φ)

where the predicate monotone expresses the monotonicity property:

monotone(φ),Πn : N .φ(succn)→ φ(n)

From now on, we only consider monotone step-indexed propositions, and abusing

notation, denote such propositions using φ or ψ. Thus, each proposition occurring in

the standard connectives of Figure 5.1 is accompanied with a proof that it is monotone.

Our shallow embedding is parameterised by the signature Ω. In MLUTT, we may

represent the signature as an inductive-recursive definition [Dybjer and Setzer, 1999]

consisting of a universe of codes U and a decoding function, J−K : U → Set. Given

this representation, each sort S ∈ S of our signature Ω arises as the interpretation JuK of

some universe code u : U. In giving the semantics of FOLµ., we identify the collection

of sorts S as the universe of codes and assume given an appropriate decoding function

J−K : S→ Set.

Define the judgement n � φ as the truth value of the proposition φ : IProp at n : N:

� : N→ IProp→ Set

n � φ , proj1(φ) n

We now define our shallow embedding of FOLµ. using IProp. We show only the

construction of the step-indexed proposition N → Set, omitting the accompanying

proofs of monotone which follow trivially from the components of each connective.
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Given φ,ψ : IProp, define conjunction and disjunction as follows.

φ∧ψ, λn.n � φ×n � ψ

φ∨ψ, λn.n � φ+n � ψ

where disjunction uses a meta-level sum type, + with constructors inj1 and inj2 which

we omit but can be easily defined as an inductive type.

Assume given a map φ : JSK→ IProp, define ∀ and ∃ quantifiers as follows.

∀x : S . φ, λn.Πx : JSK .n � φ x

∃x : S . φ, λn.Σx : JSK .n � φ x

An interesting case is implication. The semantics we give must satisfy monotonic-

ity, and doing so requires a Kripke-style semantics for implication, ensuring that the

implication holds for all ‘future worlds’, i.e all indices strictly less than the current

one, as well as the current one. Assume given φ,ψ : IProp,

φ =⇒ ψ, λn.Πk : N .k ≤ n→ k � φ→ k � ψ

Equivalence of two step-indexed propositions φ,ψ : IProp is built from existing oper-

ators:

φ ⇐⇒ ψ, (φ =⇒ ψ)∧ (ψ =⇒ ψ)

Assuming φ : IProp, the . modality is defined by cases on the step-index.

. φ 0 , >

. φ (succn) , n � φ

where we omit the obvious injection of > into an IProp.

Application of relation symbols A : JSK→ Set to terms t : JSK gives rise to a trivial

step-indexed proposition in which the step-index is ignored. Such an interpretation is

trivially monotone. Since the injection of such relations into FOLµ. is implicit, we iden-

tify the MLUTT application A t yielding a Set with the corresponding FOLµ. application

construct yielding an IProp.

5.1.1 Predicates and Contractivity

We now turn to the semantics for FOLµ. predicates for which the fixed-point construct

is of central importance, being the basis for the definition of ELLA applicative and
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logical approximations in Chapter 6. In giving the semantics, we restrict attention to

unary predicates (x : S).φ and µP : S .π. The results extend to predicates of arbitrary

arity by straightforward (un)currying. A unary predicate π is represented in MLUTT

using the following type.

Pred : S → Set1

Pred S , JSK→ IProp

We define the trivial predicate which is true for all arguments and steps:

TrueS : Pred S
TrueS , λ .>

where we typically omit the S subscript and just write True.

The encoding for (x : S).φ with φ : Pred S is defined as follows.

(x : S).φ, λx.λn.n � φ x

Earlier, we briefly alluded to an important restriction placed on the occurrences

of predicate variables within a fixed-point predicate to ensure the predicate is well-

founded. Roughly speaking, this restriction, known as contractivity, requires all uses

of the predicate variable to occur under a . operator. The contractivity constraint is

sufficient to establish the existence of a fixed-point for a recursive predicate.

Dreyer et al. [2011] give a Kripke model for their logic LSLR which relies on con-

tractivity for interpreting recursive relations. However, in their case contractivity is

used to ensure their chosen induction metric is well-founded. While FOLµ. is highly

inspired by LSLR, our use of contractivity is much closer to its application in estab-

lishing a fixed-point for COFEs by Di Gianantonio and Miculan [2003]. We illuminate

how the semantics for FOLµ. predicates arises as a particular instance of the general

COFE framework. Our presentation is motivated by a desire to establish a clear con-

nection between (a shallow embedding of) an LSLR-like logic, and the exact structures

involved in the construction of a COFE. Indeed, recent work by Biernacki et al. [2018]

assume such a connection exists, writing:

In order to hide indices and give a concise, readable definition we work in
the category COFE of complete ordered families of equivalences . . . This
means that throughout the paper formulas (and relations) are implicitly
indexed. . .

yet their formalisation in COQ is based on the LSLR-inspired IXFREE library by Pole-

siuk [2017], and they do not make the connection explicit. Similar to our presentation
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below, Sieczkowski et al. [2015] report on formalising COFEs in COQ but do not show

the construction of the unique fixed-point, as we do in Definition 5.11.

We recall the definitions and properties of ordered families of equivalences (OFEs)

and COFEs due to Di Gianantonio and Miculan [2003] given in standard first-order

logic. FOLµ. predicates serve as a running illustrative example.

Definition 5.2. An ordered family of equivalences (OFE) is a tuple O = 〈A,<,X ,∼〉
where A (the carrier) and X (the domain) are sets, < is a well-founded order on A, and

∼ is an A-indexed family of equivalence relations 〈∼a〉a∈A on X .

Example 5.3 (FOLµ. predicates form an OFE). The ordered family of equivalences for

the set of all FOLµ. predicates Pred S for some S : S is:

OS = 〈N,<,Pred S ,∼〉

induced by

π∼ π
′ , ∀x : S .π x ⇐⇒ π

′ x

and

π∼n π
′ , n � π∼ π

′

Our OFE definition above is analogous to an exposition given by Jung et al. [2018b]

for step-indexing in an IRIS model. Not surprisingly, both accounts agree on the defini-

tion of n-equivalence; it must be monotone with respect to step-indices. The accounts

differ in regards to the metatheory: we describe an OFE within our meta-language

MLUTT, whereas Jung et al. opt for a more familiar set theoretic setting.

Definition 5.4. Let O = 〈A,<,X ,∼〉 be an OFE. Let I ⊆ A, and (xa)a∈I , an I-indexed

family of elements in X . Such a family (xa)a∈I is coherent if

∀a,b ∈ I.a < b =⇒ xa ∼a xb

Moreover, (xa)a∈I has a limit y if

∀a ∈ I =⇒ xa ∼a y

A family of elements (xa)a∈I in X indexed by I ⊆ A can be understood as the

following Π-type in MLUTT.

fam : Πa : A .a ∈ I→ X

which degenerates to fam : A→ X when I = A.
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Example 5.5. By the definition of ∼ in Example 5.3, a family of predicates given by

π− : N→ Pred S is coherent if and only if

∀n,m ∈ N,x : S .n < m→ n � πn x ⇐⇒ πm x

Predicates occurring later in the sequence (i.e. at larger step-index) are required to

agree with all earlier predicates for an increasing number of indices. Thus, most agree-

ment occurs at lower step-index and suggests that the sequence is decreasing in nature,

carving out an ever smaller collection of S objects which satisfy the next predicate

in the sequence. In other words, a coherent family is a sequence, or chain, of predi-

cates which is converging with respect to the equivalence relation of the OFE. These

observations accord with the view that increasing the step counter increases our dis-

criminatory power.

Definition 5.6. A complete ordered family of equivalences (COFE) is a tuple

O = 〈A,<,X ,∼, lim
·∈A

, lim
·<·
〉

such that

• 〈A,<,X ,∼〉 is an OFE;

• lim·∈A is a function such that for all coherent families (xa)a∈A, lim
a∈A

xa is a limit

for (xa)a∈A;

• lim·<· is a function such that for all a ∈ A and coherent families (xb)b∈↓a, lim
b<a

xb

is a limit for (xb)b∈↓a;

where ↓ a, {b ∈ A | b < a}.

As remarked by Di Gianantonio and Miculan [2003], and seen earlier for fam, the

limit constructions can be given a typing in MLUTT:

lim
·∈A

: (A→ X)→ X lim
·<·

: Πa : A .(↓ a→ X)→ X

Example 5.7. Extending the OFE from Example 5.3, define the following limit con-

structions for coherent families of unary FOLµ. predicates:

k �
(

lim
n∈N

πn

)
x, k � πk x

lim
n<0

πn , True lim
n<m+1

πn , πm
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Note that for limn∈Nπn we have only defined the first component N→ Set of IProp.

Monotonicity of the limit follows from coherence and monotonicity of the predicates in

the family; we omit the details. We can prove these constructions satisfy the conditions

required of a limit. For limn∈Nπn, we require to show

∀m ∈ N.πm ∼m

(
lim
n∈N

πn

)
By definition, given k ≤ m and x : S , it suffices to show

k � πm x↔ k � πk x

where P↔ Q, P→ Q×Q→ P in MLUTT.

By cases, k = m is immediate and k < m follows from coherence of the family. The

check for the other limit construction is similar.

Definition 5.8. Given an OFE 〈A,<,X ,∼〉 a function f : X → X is contractive if for

every x,y ∈ X and a ∈ A we have

∀b < a.x∼b y =⇒ f (x)∼a f (y)

Given approximate inputs, a contractive function produces more approximate out-

puts. The formal definition essentially characterises the function of the . modality.

Example 5.9 (Contractivity in FOLµ.). By definition of the OFE in Example 5.3, a

function f : Pred S → Pred S is contractive, written contractive( f ) if, given predicates

π,π′ : Pred S , the following inference is provable for all n : N:

∀k.k < n→ k � π∼ π
′→ n � f π∼ f π

′

using the definition of ∼ for the aforementioned OFE.

Expressing the above using the Kripke semantics for FOLµ. implication and the .

modality we obtain:

Πn : N .n � .(π∼ π
′) =⇒ ( f π∼ f π

′)

which embodies the stipulation that occurrences of the predicate variable, standing for

π and π′ in the left- and right-hand side, respectively, must occur under a later operator.

We now have introduced enough machinery to state Di Gianantonio and Miculan’s

[2003] main result.
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Theorem 5.10. Let O = 〈A,<,X ,∼, lim·∈A, lim·<·〉 be a COFE and f a contractive

function on X. Then, there exists a generalised fixed point x ∈ X with the property that

x∼ f (x). For every other generalised fixed point y, we have x∼ y.

We can prove a fixed point result for our COFE instance of FOLµ. predicates. The

proof of Theorem 5.10 relies on an A-indexed family of X elements defined by induc-

tion on the well-founded order relation < using a limit construction and the contractive

function f . Di Gianantonio and Miculan [2003] give this construction as:

xa , f
(

lim
b<a

xb

)
(POWLIMIT)

Since, we are working with an explicit A, namely N, this construction essentially

amounts to defining a family by induction on N. The inductive case applies the con-

tractive function to a structurally smaller argument. The base case simply returns

limm<0 πm which by Example 5.7 is defined to be True.

Definition 5.11. Define pow : (Pred S → Pred S)→ N→ Pred S → Pred S to be the

N-indexed family of FOLµ. predicates defined by primitive recursion on N:

pow f 0 P0 , P0

pow f (succn) P0 , f (pow f n P0)

To arrive at a fixed point for the above family, we may utilise the limit construction

lim·∈A provided by the COFE for FOLµ. predicates. First, the essential property we

must show is that the family generated by Definition 5.11 is coherent. Abstractly, that

is:

∀c < b ∈↓ a. f
(

lim
e<c

xe

)
∼c f

(
lim
e<b

xe

)
by induction on < for each family (xb)b∈↓a, for all a ∈ A.

Concretely, we require a proof of coherence for the family generated by pow with

P0 = True.

Lemma 5.12. Given k ≤ n, x : S , and f : Pred S → Pred S ,

k � f (pow f k True) x ⇐⇒ f (pow f n True) x

Proof. By induction on k.

Note that the construction of Equation POWLIMIT constructs the sequence:

>, f (>), f ( f (>)), . . . , f n(>), . . .
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which converges to a fixed point by Theorem 5.10. We shall prove the fixed point

constructed is a greatest fixed point, thus justifying the view of Löb induction as a

coinductive proof principle.

We pave the way towards our result by first considering the following theorem for

an endofunction on a complete lattice.

Theorem 5.13. [Sangiorgi, 2011, § 2.8]. Let F be an endofunction on a complete

lattice, in which ⊥ and > are the bottom and top elements. If F is cocontinuous, then

gfp(F) =
l

n≥0

Fn(>).

Theorem 5.13 constructs exactly the same sequence as Equation POWLIMIT. Thus,

it suffices to show that contractive functions are cocontinuous.

Definition 5.14. [Sangiorgi, 2011, § 2.8]. An endofunction F on a complete lattice is

cocontinuous if for all sequences α0,α1, . . . of decreasing points in the lattice, we have

F(
l

i

αi) =
l

i

F(αi).

From the COFE structure in Example 5.7 we wish to form a complete lattice with

respect to some partial order ≤ upon which the contractive functions of Example 5.9

are cocontinuous. In particular, fix a contractive function f . We take our lattice to

be the elements, >, f (>), f ( f (>)), . . .; that is the set { f n(>) | n ∈ N} along with the

partial order ≤ defined by:

f j(>)≤ f i(>), i≤ j

This lattice is complete: the top element is >, the bottom element is lim
n∈N

f n(>), given

by the COFE structure, and any two elements have a meet and a join defined by:

f j(>)u f i(>),

{
f j(>) if i≤ j

f i(>) if j ≤ i
f j(>)t f i(>),

{
f i(>) if i≤ j

f j(>) if j ≤ i

These definitions compute the meet (resp. join) as the element under the most (resp.

least) applications of the contractive function f .

Define F(π) = f (π) to be an endofunction on the complete lattice above. The final

step in concluding Theorem 5.13 is to prove this endofunction is cocontinuous.

Lemma 5.15. The endofunction F is cocontinuous. That is, for all sequences α = α0,α1, . . .

of decreasing points in the lattice, we have

F(
l

i

αi) =
l

i

F(αi).
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Proof. We prove the result in two parts.

Case F(
d

i αi)≤
d

i F(αi).

We have
d

i αi ≤ αi, for all αi ∈ α, by definition of the meet for a sequence.

Therefore, by definition of ≤, we have

f

(
l

i

αi

)
≤ f (αi)

for all αi ∈ α. By the definition of F , we may conclude

F

(
l

i

αi

)
≤ F(αi)

for all αi ∈ α. In other words, F(
d

i αi) is a lower bound for the sequence,

{F(αi) | αi ∈ α}. By definition of the greatest lower bound, we have

F

(
l

i

αi

)
≤

l

i

F(αi)

as required.

Case
d

i F(αi)≤ F(
d

i αi).

By definition of the greatest lower bound,

l

i

F(αi)≤ F(αi)

for all αi ∈ α. In particular, by the completeness of the lattice and the definition

of the meet for a sequence,
d

i αi occurs in the sequence α. Hence,

l

i

F(αi)≤ F

(
l

i

αi

)

as required.

Definition 5.16 (FOLµ. Fixed-Point Predicate). Given π : Pred S → Pred S such that

contractive(π), define (µP : S .π) : Pred S as follows.

µP : S .π, λx.λn.n � π (pow π n True) x.
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Again, we do not give a proof of monotonicity for this construction, but it follows

from contractivity of π and Lemma 5.12.

We complete our description of FOLµ. by defining the main reasoning judgement.

Definition 5.17. The main judgement Φ  ψ states that under the hypotheses Φ the

formula ψ is provable in FOLµ.. Encoding of this judgement is as follows. First, we

define an operation on lists of formulae.∧
: List IProp → IProp∧

[] , >∧
(φ :: Φ) , φ∧ (

∧
Φ)

The main judgement unpacks the list of hypotheses Φ into a single FOLµ. formula,

resulting in the following encoding for the main judgement.

Φ  ψ,Πn : N .n � (
∧

Φ) =⇒ ψ

In fact, since we are quantifying over all steps, we can further simplify the definition

by using the (non-dependent) function space of MLUTT for implication:

Φ  ψ,Πn : N .n � (
∧

Φ)→ n � ψ

5.2 Derivable Inference Rules

We can derive a collection of inference rules which are provable in our model, i.e.

the shallow embedding. We present a basic set of rules in Figure 5.2 which includes

the standard introduction and elimination rules for the logical connectives, familiar

from natural deduction presentations of first-order logic. The inference rules can be

understood as representing the function space of the meta-language MLUTT. That is,

given X1, . . . ,Xn,Y : Set, stating a rule such as:

RULE

X1 X2 · · · Xn

Y

should be read as witnessing an MLUTT function rule : X1→ ··· → Xn→ Y .

A clear advantage of our shallow embedding is the handling of capture-avoiding

substitution, α-equivalence, and the treatment of binders and the function space by the

meta-language MLUTT. In particular, we do not require inference rules for substitu-

tion, e.g. in universal quantification elimination, or application to a predicate, because
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( =⇒ I)

Φ,φ  ψ

Φ  φ =⇒ ψ

( =⇒ E)

Φ  φ =⇒ ψ Φ  φ

Φ  ψ

(∧I)

Φ  φ Φ  ψ

Φ  φ∧ψ

(∧LE)

Φ  φ∧ψ

Φ  φ

(∧RE)

Φ  φ∧ψ

Φ  ψ

(∨LI)

Φ  φ

Φ  φ∨ψ

(∨RI)

Φ  ψ

Φ  φ∨ψ

(∨E)

Φ  φ1∨φ2 Φ,φ1  ψ Φ,φ2  ψ

Φ  ψ

(.I)

Φ  φ

Φ  .φ

(.LÖB)

Φ,.φ  φ

Φ  φ

(∀I)

Πx : JSK .Φ  φ x

Φ  ∀x : S . φ

(x a fresh MLUTT variable)

(∀E)

Φ  ∀x : S . φ

Φ  φ t
(t : JSK)

(∃I)

Φ  φ t

Φ  ∃x : S .φ
(t : JSK)

(∃E)

Φ  ∃x : S .φ

Σx : JSK .Φ  φ x
(x a fresh MLUTT variable)

ABSPROPAPP

Φ  (x : S).φ

Φ  ((x : S).φ) t
(t : JSK)

UNROLL

Φ  (µP : S.π) t

Φ  π (µP : S.π) t

ROLL

Φ  π (µP : S.π) t

Φ  (µP : S.π) t

(∧D)

Φ  .(φ∧ψ)

Φ  (.φ)∧ (.ψ)
==============

(∨D)

Φ  .(φ∨ψ)

Φ  (.φ)∨ (.ψ)
==============

( =⇒ D)

Φ  .(φ =⇒ ψ)

Φ  (.φ) =⇒ (.ψ)
==================

(∀D)

Φ  .(∀x : S . φ)

Φ  ∀x : S . .φ

==============

Figure 5.2: A collection of derivable rules for our FOLµ. model
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substitution of bound variables for terms is automatic by virtue of our encoding of

these constructs as meta-language functions. In contrast, Dreyer et al.’s [2011] infer-

ence rules represent a deep embedding of LSLR in an unspecified meta-logic which is

subsequently given an interpretation through a step-indexed model.

As mentioned earlier, the . modality admits the Löb induction principle. Taking

Φ to be the empty list in rule (.Löb), we arrive at the rule given in the introduction.

Concretely, we can unfold the definition to obtain:

Πk : N .k ≤ n→ k � .ψ→ k � φ

n � ψ

where we see that the Löb rule is indeed an induction principle: well-founded induction

over the ordering relation <.

The . modality also abstractly characterises the monotonicity property of step-

indexed propositions; the (.I) rule in Figure 5.2. For this reason, when applying this

rule, we often refer to it as monotonicity, or simply mono.

A key property to establish for our connectives is that they are contractive in the

sense of Example 5.9. The majority of these are straightforward, following from the

elimination rules of the various connectives. Contractivity of the . modality relies

on its distributivity with respect to implication. More generally, . distributes over all

connectives apart from ∃. For example, the rule

Φ  .(φ∧ψ)

Φ  (.φ)∧ (.ψ)
==============

is derivable in our model, where the double bar indicates the rule is an isomorphism of

MLUTT functions.

Finally, we have rules for predicates: application for abstracted propositions, and

the (un)folding rules for our fixed-point predicates. By appealing to our MLUTT model,

these constructs are guaranteed to be well-formed, e.g. matching actual and expected

argument sequences, in order for the rules to define valid MLUTT function typings.

The set of rules is not exhaustive; they do not constitute a definition of FOLµ..

One benefit of a shallow embedding over a deep embedding is the ease of extending

the system with further rules, defined directly by the semantics we presented in the

previous section.
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5.3 Discussion

Our AGDA formalisation is heavily inspired by the IXFREE library developed by Pole-

siuk [2017]. IXFREE is based on the LSLR logic and is similar to other libraries, e.g.

ModuRes [Sieczkowski et al., 2015] and Appel et al.’s [2007] accompanying COQ

library. IXFREE differs from ModuRes by fixing the carrier A to be N whereas Mod-

uRes formalises the more general COFE structures, supporting the modelling of more

complex calculi involving higher-order state and concurrency. The development by

Appel et al. is similar to IXFREE, stratifying judgements by natural numbers charac-

terising the finite approximations. The former, however, has a slightly different aim:

they seek to establish safety properties of programs with respect to a semantics, rather

than establishing logical relations for program equivalence.

Porting the library to AGDA was somewhat non-trivial due to the different sup-

port AGDA and COQ provide for theorem proving. AGDA theorem proving consists

of constructing a dependently-typed function which realises the statement of the theo-

rem. In contrast, COQ supports proof construction by tactic scripts using an untyped

tactic language called LTAC [Delahaye, 2000]. User-defined LTAC scripts support pat-

tern matching on hypotheses in the context and on current proof obligations, allowing

straightforward discharging of step-index arithmetic without the user of the library ever

having to see it.

It is more challenging to achieve similar abstract behaviour in AGDA. The shallow

embedding hides the step-indexing explicit in logical connectives but fails to elimi-

nate all step-indexing arithmetic. In particular, reasoning about FOLµ. implications at

index n, say, usually requires introduction of the Kripke assumption of a future step-

index k such that k ≤ n. These appear as additional patterns to the AGDA function

representing the theorem statement. While some cases would benefit from the more

abstract treatment, e.g. cases which introduce the constraint only to apply it immedi-

ately to a subgoal, we argue that many cases are more readable as a result since the

extra assumptions can be included in spelling out intermediate proof obligations.

While we gain much flexibility by our choice of encoding, our shallow embedding

has some disadvantages. Firstly, as a well-known drawback of shallow embeddings,

formulae cannot be easily transformed into an equivalent form. Secondly, AGDA has

trouble inferring the step-index and proposition of a supplied judgement n � φ, making

appeals to lemmas extremely verbose for concrete propositions φ that are even just a

few nested connectives in size. We have found packaging the judgement with AGDA’s
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record syntax assists the AGDA type checker in inferring the details. Separately, we

investigated a form of reification and reflection to address these issues. We define a

deep HOAS embedding of FOLµ. which reifies the shallow IProp representation as

a syntax tree. We are able to define recursive functions over the syntax to perform

transformations of formulae. These functions can be invoked during proofs to simplify

goals, in a certain sense emulating a restricted form of type-safe tactic-based proving.

Once the transformation is performed, we reflect the syntactic representation back to

an IProp to complete the proof. A concrete example of such a transformation is a pro-

cedure to push the . modality as far into a formula as possible by repeatedly appealing

to the distributivity laws. An analogous LTAC tactic has been defined for the users of

the IXFREE library. The procedure is used throughout the development, including in

proofs of contractivity to reduce the formula to a form for which the contractivity laws

of each connective easily applies. Our particular approach to reification and reflection

was inspired by the category theory library developed by McBride [2018] in AGDA.

Currently, we have formalised as far as the fundamental theorem for an extension of

λ→FG with recursive functions. Our development is essentially a partial formalisation of

a modal logic version of Pitts’s [2010] tutorial which presents a step-indexed account of

frame stack termination. The main difference between the two being Pitts’ termination

relation is augmented with step counter whereas the reduction relation in our AGDA

development is an atomic relation provided by the instantiated signature Ω, allowing

us to more effectively hide step indices occurring in theorem statements.

5.4 Related Work

We have already mentioned our main influences: LSLR by Dreyer et al. [2011] and

COFE by Di Gianantonio and Miculan [2003]. It is worth noting Appel et al. [2007]

and Nakano [2001], two papers that popularised the use of Kripke modal logics with .

for approximating self-references. Indeed, these two works were the original inspira-

tion for the LSLR logic. Regarding Nakano [2001], two typing systems are built upon

a modal logic for approximating self-references in types, i.e. arbitrary recursive types.

The semantics is essentially the same as Dreyer et al.’s Kripke model for LSLR. Appel

et al. [2007] apply the modal logic to the interpretation of typed assembly languages

in the context of proof-carrying code. Using their model they prove semantically that

well-typed programs are safe to execute. They provide a formalisation of a shallow

embedding of their logic in COQ.
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The IXFREE library has been used by others for formalising equivalence results for

algebraic effects and handlers [Biernacki et al., 2018; Zhang and Myers, 2019]. In par-

ticular, Biernacki et al. develop a sound logical relation for a core calculus and prove

a number of program equivalences. Building on their formalisation, Zhang and Myers

develop a logical relations model for a calculus which ensures effect encapsulation by

resolving effect operations according to the lexical scoping of handlers.

Our syntax for our logic splits propositions and predicates into distinct phrase

classes. In contrast, Dreyer et al. [2011] define a general “relations” grammar whose

well-formedness includes the arity for the relation. Our syntax draws inspiration from

the first-order logic by Pretnar [2010], for the a-calculus, supporting reasoning about

algebraic effects and handlers. Pretnar’s logic interprets (least and greatest) fixed-point

predicates using an extension of the Knaster-Tarski theorem.

Basold [2018] develops a similar logic to FOLµ., called FOLI, focussed on ob-

servational equivalence for mixed inductive-coinductive programs. Basold presents a

Kripke-style model similar to our concrete model in AGDA, where Kripke worlds are

represented using natural numbers corresponding to approximations. FOLI is sound

for observational equivalence but not complete; it is unable to validate certain observa-

tional equivalences involving inductive arguments over coinductive objects (see [Ba-

sold, 2018, Example 5.2.32]). On the other hand, our FOLµ. logic is independent of the

questions of soundness or completeness for observational equivalence. In Chapter 6,

we derive the triangulation result for ELLA by encoding the relevant relations within

FOLµ.. However, FOLµ. is more limited than FOLI in the sense that use of the later

modality is restricted to the construction of predicates, and cannot be used to construct

or reason about coinductive objects, e.g. infinite streams.





Chapter 6

Ella

In this chapter, we characterise observational equivalence for ELLA, an effectful pro-

gramming language, using the triangulation proof technique described in Chapter 4.

We present a core monomorphic calculus, ELLA, supporting binary handlers which

we claim captures the essence of the full FRANK language. Its syntax and type system

are naturally inspired by FRANK and our fine-grained CBV development in Chapter 4.

We extend the frame stack development of Section 4.3 to handler stacks in order to

incorporate effect handling and the forwarding of commands to their nearest dynami-

cally enclosing effect handler.

Following the triangulation method, we define a notion of program approximation

based on concrete contexts, as extensions of the term grammar for ELLA. Next, we

define logical and applicative approximations within FOLµ. for structural reasoning

about behaviour, and prove that they coincide with the observational notion. From

these structural notions, we derive useful lemmas for reasoning about concrete program

approximations.

The chapter concludes by discussing our main influences from the literature, and

situates our work on ELLA in the wider context of program equivalence for effectful

calculi.

6.1 Syntax and Semantics

ELLA is a call-by-value monomorphic language with a type- and-effect system. The

language has first-class support for effects and their handlers. ELLA captures most

of the features supported by FRANK [Lindley et al., 2017] except from parametrised

datatypes (and interfaces), and value and effect polymorphism. Adding these features

115
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to ELLA would be straightforward but they would obscure the key ideas presented here

so we omit them. In particular, Biernacki et al. [2018] have developed a sound logical

relation for a effect-polymorphic core calculus which we discuss further in Secion 6.5.

Extensions for value polymorphism and recursive types could follow the development

for Fµ by Dreyer et al. [2011], due to ELLA’s clean separation between value and effect

types.

The syntax for ELLA has taken inspiration from the developments of Chapter 4

and differs from FRANK’s abstract syntax given by Convent et al. [2020]. In particular,

ELLA is expressed in an A-normal/fine-grained form [Levy, 2004; Pitts, 2005]. One

could imagine a translation on FRANK programs, turning them into ELLA programs

by explicitly binding intermediate terms, and instantiating all polymorphism.

We recall our notational convention from Chapter 4: we denote equalities that hold

definitionally by = and ,, and propositional equalities by ≡.

6.1.1 Syntax

Figure 6.1 gives the abstract syntax for ELLA types, terms and environments. Unsurprisingly,

the types of ELLA are separated into value types and computation types. The value

types are the base types (boolean, integer or unit) and suspended computation types,

{C}. An ELLA computation type takes the form:

C = 〈∆〉A→ [Σ]B where |〈∆〉A|= 2

where operators have exactly two arguments, (〈∆i〉Ai)i=1,2, each specifying a distinct

adjustment ∆i and value type, Ai. The result type specifies the computation may per-

form effects in the ability Σ — to be handled by the environment — and returns a value

of type B.

Restricting our formalism to computation types of two arguments is sufficient to

express the example approximations we consider in Chapter 7, including a variant of

the pipe multihandler first shown in Section 3.9. Of course, we can simulate unary

handlers and functions by setting ∆2 to the identity adjustment, ι, and A2 = unit. For

argument sequences larger than two, we could consider encoding them using binary

operators similar to Lindley et al.’s [2017] translation of n-ary operators into unary

handlers and case splits, or generalise the formalism presented in this chapter to handle

operators of arbitrary finite arity. We do not envisage any complications arising from

such an extension of our results.
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Types
(value types) A,B : Ty ::= bool | int | unit | {C}
(computation types) C ::= T,T → G

(argument types) T ::= 〈∆〉A
(result types) G ::= [Σ]A

(interfaces) I ::= {ci : Ai→ Bi}i

(abilities) Σ : Ab ::= ∅ | Σ, I
(adjustments) ∆ : Adj ::= ι | ∆, I

(type environments) Γ ::= · | Γ,x : A

Terms

(booleans) b ::= tt | ff
(commands) c

(integers) k ∈ Z
(term variables) x,y,z, f

(values) v,w : Val ::= x | b | k | () | (rec f{e} : {C})
(uses) m : Trm↑ ::= v | v n1 n2

(constructions) n : Trm↓ ::= ↓m | H ? c v | let x : A = n in n′

(frames) F : Frm ::= (rec f{e} : {C}, u �) | (rec f{e} : {C},� n) | (x : A.n)

(handler stacks) H : Stk ::= Id | H ◦F

(normal forms) u : NF ::= ↓v | H ? c v

(computations) e ::= r 7→ n

(computation patterns) r ::= p | 〈c p → z〉 | 〈x〉
(value patterns) p ::= b | k | () | x

Figure 6.1: ELLA Syntax
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Thus, for the computation type 〈∆〉A→ [Σ]B, we always have |〈∆〉A| = 2. Gen-

erally, for other sequences (e.g. pattern clauses) we adopt the notation α to specify a

sequence of αs of arbitrary finite length.

We briefly describe the various components of ELLA’s effect system. We intro-

duced them previously (Section 3.3) in the more general FRANK setting. Commands

are specified by a symbol or name, paired with their type signature, e.g. c : A→ B. For

simplicity, commands are unary as opposed to FRANK’s n-ary commands. Interfaces,

ranged over by I, describe an effect by its primary sources, i.e. the collection of com-

mands which give rise to the effect. An ability Σ represents the effects permitted by the

context which is either (∅) representing purity or a non-empty collection of interfaces.

An adjustment ∆ is a collection of interfaces.

Definition 6.1. We write ∆(Σ) for the action of an adjustment on an ability:

ι(Σ) = Σ (∆, I)(Σ) = ∆(Σ), I

In ELLA, we give a list-like syntax for interpretation of adjustments and abili-

ties. Potential duplicates do not play a significant role in ELLA because we do not

have adaptors, parameterised interfaces nor effect polymorphism. So any duplicate in-

stances are in fact identical. That is, State Int and State Bool are not represented

as the same interface (State) instantiated to different arguments, Int and Bool, re-

spectively. Instead, we would represent the two state effects as different interfaces,

IState and BState, say, with their own distinct collection of commands. Despite this,

we choose to stick with an interpretation which allows duplicates because it is sim-

pler than preventing them with a set-based semantics, and it leaves open the door to

subsequent extensions.

Following the design of FRANK, ELLA has a bidirectional type system (Figure 6.2)

which distinguishes terms whose types are inferred (uses), and terms whose types are

checked (constructions). Following our λ→FG formalism, all values and terms are im-

plicitly well-typed and-scoped according to the (bidirectional) type system.

For uses, note that we have an implicit injection of values (whose type may al-

ways be inferred). The use values consist of the unit value (), booleans b ∈ {tt, ff},
integers k ∈ Z, and x ranging over countably infinite sets of variable names. In Fig-

ure 6.2, we give only one representative rule for base types (T-BOOL), the others are

completely standard. The final value form is type-annotated recursive computations,

rec f{e} : {C}, which embody functions and effect handlers. In bidirectional systems,
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Γ [Σ]-- m⇒ A

T-VAR

x : A ∈ Γ

Γ [Σ]-- x⇒ A

T-BOOL

b ∈ {tt, ff}

Γ [Σ]-- b⇒ bool

T-THUNK

Γ, f : {C}` e :C

Γ [Σ]-- (rec f{e} : {C})⇒{C}

T-APP

Γ [Σ]-- v⇒{〈∆〉A→ [Σ]B} (∆i(Σ) = Σ
′
i)i=1,2 (Γ [Σ′i]-- ni : Ai)i=1,2

Γ [Σ]-- v n⇒ B

Γ [Σ]-- n : A

T-SWITCH

Γ [Σ]-- m⇒ A A = B

Γ [Σ]-- ↓m : B

T-COMMAND

c : A→ B ∈ Σ Γ [Σ]-- H : [Σ′]B( B′ c-stuck(H) Γ [Σ′]-- v⇒ A

Γ [Σ]-- H ? c v : B′

T-LET

Γ [Σ]-- n : A Γ,x : A [Σ]-- n′ : B

Γ [Σ]-- let x : A = n in n′ : B

Γ` e :C

T-COMP

(ri, j : Tj --[Σ] Γ
′
i, j)i, j

(Γ,(Γ′i, j) j [Σ]-- ni : B)i

(ri, j)i, j covers (Tj) j

Γ` r 7→ n : T → [Σ]B

p : AaΓ

P-VAR

x : Aa x : A

P-BOOL

b : boola ·

r : T --[Σ] Γ

P-VALUE

p : AaΓ

p : 〈∆〉A --[Σ] Γ

P-REQUEST

c : A→ B ∈ ∆(∅) p : AaΓ

〈c p→ z〉 : 〈∆〉B′ --[Σ] Γ,z : {〈ι〉B,〈ι〉unit→ [∆(Σ)]B′}

P-CATCHALL

〈x〉 : 〈∆〉A --[Σ] x : {〈ι〉unit→ [∆(Σ)]A}

Figure 6.2: ELLA Bidirectional Typing Rules
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a beta reduction is always explicitly annotated with the type of the abstraction. The

remaining use, or inferrable term, is application v n1 n2, which we explain shortly.

Constructions (checked terms) are ranged over by n and consist of let bindings

for sequencing, an explicit injection ↓m of a use to a construction, and stuck terms

generalising command invocations. Stuck terms along with values form a subset of

constructions called normal forms, ranged over by u. A stuck term is of the form

H ? c w, for some command c : A→ B, value w of type A and handler stack H subject

to a “stuck” constraint we introduce shortly.

Handler stacks generalise the frame stacks we saw in Chapter 4. Their grammar is

presented in Figure 6.1. Id represents the empty stack and H ◦F is concatenation of a

single frame F onto the stack H.

There are three distinct kinds of frame: a sequencing frame, (x : A.n), an operator

frame, (rec f{e} : {C},� n), which pairs an operator with its second argument, and

another operator frame, (rec f{e} : {C}, u �), which pairs an operator with its first

argument reduced to a normal form. The intuition behind the two operator frames is

that during reduction of an application term, we reduce the arguments in order from

left-to-right until they reach a normal form. We store the unevaluated second argument

in the frame while we reduce the first argument. Once the first argument reaches a

normal form, we store it in the frame and focus reduction on the second argument.

The typing rules for handler stacks appear in Figure 6.3. By the T-ID rule, a handler

stack may appear in a context with any typing environment or ability. Sequencing

(T-SEQ) does not alter the collection of effects supported by a stack. The rules for

operator frames modify the ability permitted at the argument type according to the

type signature of the operator. For example, T-HANDLE-FST rule constructs a handler

stack expecting an argument term of type A1, which may perform effects occurring in

the ability Σ′, or effects which are handled by the first argument of the operator e. Note

that for T-HANDLE-SND, we enforce that the first argument is a normal form for the

operator e by using the Σ-normal() judgement. We usually omit the ability annotation

on ◦ for brevity.

The “stuck” constraint we alluded to earlier is captured by the judgement c-stuck(H)

defined by the inference rules in Figure 6.4. Intuitively, a frame is c-stuck if it does not

handle the command c.

ELLA adopts a similar fine-grained approach to syntax witnessed in λ→FG. The

one exception is application (T-APP) which is generalised to account for effect han-

dlers. Like FRANK, there is no special syntax for effect handling in ELLA. Instead,
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T-ID

Γ [Σ]-- IdΣ : [Σ]A( A

T-SEQ

Γ [Σ]-- H : [Σ′]B( B′ Γ,x : A [Σ′]-- n : B

Γ [Σ]-- H ◦Σ′ (x : A.n) : [Σ′]A( B′

T-HANDLE-FST

Γ [Σ]-- H : [Σ′]B( B′

C = 〈∆〉A→ [Σ′]B (∆i(Σ
′) = Σ

′
i)i=1,2 Γ, f : {C}` e :C Γ [Σ′2]-- n : A2

Γ [Σ]-- H ◦Σ′1
(rec f{e} : {C},� n) : [Σ′1]A1( B′

T-HANDLE-SND

Γ [Σ]-- H : [Σ′]B( B′ C = 〈∆〉A→ [Σ′]B

(∆i(Σ
′) = Σ

′
i)i=1,2 Γ, f : {C}` e :C ∆1(∅)-normal(u) Γ [Σ′1]-- u : A1

Γ [Σ]-- H ◦Σ′2
(rec f{e} : {C}, u �) : [Σ′2]A2( B′

Σ-normal(↓w)

c : A→ B ∈ Σ

Σ-normal(H ? c w)

Figure 6.3: ELLA handler stack typing rules

c : A→ B /∈ ∆1(∅)

c-stuck((rec f{e} : {〈∆〉A→ [Σ]B},� n))

c : A→ B /∈ ∆2(∅)

c-stuck((rec f{e} : {〈∆〉A→ [Σ]B}, u �)) c-stuck((x : A.n))

c-stuck(Id)

c-stuck(H) c-stuck(F)

c-stuck(H ◦F)

Figure 6.4: ELLA stuck frames and handler stacks
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Given f : {C}` e :C and Γ [Σ]-- v⇒{〈∆〉A,〈ι〉unit→ [Σ]B},

unfold(e), e[(rec f{e} : {C})/ f ]

↑Ce, rec f{e} : {C}

c v, Id ? c v

v n1 , v n1 ()

Figure 6.5: ELLA syntactic sugar

operators generalise functions, capturing both pure functions and effect handlers. A

corresponding generalisation of function application means operators are applied to

arbitrary terms which evaluate to normal forms. Consider the typing rule for appli-

cation in Figure 6.2. Effects are pushed inward at application sites: arguments may

perform all the effects allowed by the ambient ability, Σ, plus all the effects, ∆, handled

by the operator being applied.

In Figure 6.5, we present some convenient syntactic sugar which we employ through-

out this chapter. For ↑Ce, we sometimes omit the type ascription C when it is clear from

the context. For operators where the second argument type is trivial, i.e. 〈ι〉unit, we

permit omission of the second argument during application which is syntactic sugar

for application by the unit value, ().

Operators are defined by computations (rule T-COMP) which are a list of clauses

each containing patterns and a term body. For a computation to be well-typed it is

necessary that the collection of patterns completely covers the argument type(s). We

do not present a coverage checking algorithm in this dissertation. We refer the reader to

Lindley et al. [2017] for a pattern matching compilation algorithm for FRANK which

can be used to check coverage. We assume a fixed collection of built-in operators

representing arithmetic operations: {+,−,≥,≤,==, . . .}. We omit presenting their

completely standard semantics.

Pattern matching has two judgement forms: value pattern matching, p : AaΓ and

computation pattern matching r : T --[Σ] Γ. For value pattern matching, we match on

some identifier x or a concrete base value, e.g. a boolean b ∈ {tt, ff}, (here again,

we show only one rule for base types). For computation pattern matching, we either

match against a value pattern, a catch-all pattern or a request pattern. A request pattern

specifies the handling of a command c provided it occurs in the adjustment ∆ for that
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argument and the value pattern p matches the argument type of c. The variable z is

bound to the rest of the computation, the continuation.

We define a notion of simultaneous substitution inspired by Definition 4.1.

Definition 6.2 (Simultaneous substitutions). For typing environments Γ1 and Γ2 let

θ : Γ1 � Γ2 denote a simultaneous substitution θ of variables in environment Γ1 by val-

ues in environment Γ2. Informally, θ takes Γ1-terms to Γ2-terms: given Γ [Σ]-- n : A we

may apply the substitution to n and obtain Γ2 [Σ]-- θ(n) : A. The substitution of a value

v for a variable x is denoted [v/x]. We write [v/x] for the simultaneous substitution,

substituting each vi for xi. For the special case of θ : Γ � · we say that θ is a Γ-closing

substitution.

Define the left action over a handler stack, @, to be the operation that produces a

term given a handler stack and a closed term to fill its hole:

Id@n = n

(H ◦ (x : A.n′))@n = H@(let x : A = n in n′)

(H ◦ (rec f{e} : {C},� n′))@n = H@↓(↑e n n′)

(H ◦ (rec f{e} : {C}, u �))@n = H@↓(↑e u n)

Given a frame F and a handler stack H, define the operation F •H by primitive

recursion on H, and a further case analysis on F when H = Id:

(x : A.n)• IdΣ , IdΣ ◦ (x : A.n)

(↑Ce,�n)• Id∆1(Σ) , IdΣ ◦ (↑Ce,�n) if C = 〈∆〉A→ [Σ]B

(↑Ce,u�)• Id∆2(Σ) , IdΣ ◦ (↑Ce,u�) if C = 〈∆〉A→ [Σ]B

F • (H ◦F ′) , (F •H)◦F ′

We abuse notation by writing the lifting of H ◦F operating on frames F to an operation

on stacks H ′ as H ◦H ′ defined by:

H ◦ Id , H

H ◦ (H ′ ◦F) , (H ◦H ′)◦F

Similarly, we lift the −•− operation:

Id •H , H

(H ′ ◦F)•H , H ′ • (F •H)

Having both an append and a prepend operation on stacks turns out to be useful for

proving results about observable behaviour by induction on one of the arguments. Of

course, for any two stacks both operations produce the same result.
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Lemma 6.3. H ◦H ′ ≡ H •H ′.

Proof. By induction on H using Id ◦H ≡ H and F •H ≡ (Id ◦F)◦H. Both these

subsidiary equalities are proven by induction on H.

6.1.2 Semantics

We present evaluation for ELLA in terms of handler stacks in Figure 6.6. Evaluation

is defined by a termination relation operating on configurations, pairs of a stack H and

a focussed term n written 〈H,n〉. Configurations are ranged over by C and we con-

sider only well-typed configurations (see rule CONFIG in Figure 6.6). The termination

relation, − ↓ −, is much like a standard termination relation for configurations [Pitts

and Stark, 1998]. To improve readability, we omit explicit ‘use-to-construction’ injec-

tions, ↓, for result values, as well as typing annotations which are uninformative. We

silently apply these conveniences to the rest of our development. Evaluation for ELLA

is deterministic; the proof is a straightforward induction over the rules in Figure 6.6.

• E-IDVALUE. The base case for a focussed value terminating in the empty stack

context;

• E-LET pushes a sequencing frame onto the stack containing the let body and

continues evaluating the bound term;

• E-LETVALUE pops a sequencing frame off the top of the stack and evaluates the

body after substituting the value for the let-bound variable;

• E-APP pushes an operator frame onto the stack containing the second argument

and continues evaluating the first argument;

• E-APPV-FST stores the value for the first argument in the frame and begins

evaluation of the second argument;

• E-APPV-SND pattern matches the value arguments against the operator and con-

tinues with the corresponding body of the matching clause, if the match is suc-

cessful.

The remaining evaluation rules consider the cases when the focussed term is a stuck

normal form invoking some command c. The rules search for the nearest dynamically

enclosing handler for c by peeling frames off the stack (E-FORWARDCMD) until the
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handling operator is found (E-HDLCMD-FST or E-HDLCMD-SND). If we reach the

end of the stack without handling the command (E-IDCMD) then the invoked com-

mand must be supported by the ambient ability.

The behaviour of the E-APP rule accords with the left-to-right evaluation order

of ELLA (and FRANK). The rules E-APPV-SND and E-HDLCMD-SND rely on an

auxiliary judgement for pattern matching which computes the result of the application.

The pattern matching judgement (Figure 6.7) computes a substitution from the

matching clause and applies it to the body of the clause. Since the type system ensures

clauses in a computation cover the argument type (the coverage condition in T-COMP),

we need not consider the case of no matching clause. For value variable patterns,

M-VAR, the appropriate value substitution is computed. To match a command (M-

COMMAND) or catch-all pattern (M-CATCHALL-VAL or M-CATCHALL-REQ), a sus-

pended computation, representing the continuation, is created from the argument term.

By coverage, every well-typed sequence u of arguments applied to a well-typed com-

putation always yields a matching clause using the rules in Figure 6.7. Since we have

not formally defined coverage, we state the property formally below without proof.

Proposition 6.4. If ·`e :C with C = 〈∆〉A→ [Σ]B and · [Σ′i]-- ui : Ai with Σ′i = ∆i(Σ) such

that ∆i(∅)-normal(ui) then there exists an n such that e : 〈∆〉A←− u --[Σ] n.

Given the structurally inductive character of handler stacks, the rules in Figure 6.6

can be straightforwardly translated to give a small-step semantics which we present in

Figure 6.8.

Clearly the small-step semantics respects termination, we omit the details. We refer

to each rule using the prefix ‘S-’ followed by the corresponding suffix used in the rules

for Figure 6.6, e.g. E-APP becomes S-APP, E-LET becomes S-LET, etc. We stratify

the small-step semantics by whether the reduction step is an administrative step,−→α,

or a beta step, −→β. Intuitively, a step is administrative if it does not change the term

represented by the configuration. In other words, we have

〈H,n〉 −→α 〈H ′,n′〉 if and only if H@n≡ H ′@n′.

Define −→∗α to be the reflexive-transitive closure of −→α, and C −→ C ′ to be short-

hand for C −→∗α−→β C ′.
The next lemma establishes a progress result for well-typed configurations. Such

configurations are either normal — a value or a stuck term paired with an empty stack

— or reduce by exactly one rule in Figure 6.8.
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Well-typedness

CONFIG

Γ [Σ]-- H : [Σ′]A( B Γ [Σ′]-- n : A

Γ [Σ]-- 〈H,n〉 : B

TERM

· [Σ]-- C : A · [Σ]-- u : A

· ` C ↓[Σ]A u

Semantics

〈H,n〉 ↓[Σ]A u

E-IDVALUE

· [Σ]-- v⇒ A

〈Id,↓v〉 ↓[Σ]A v

E-LET

〈H ◦ (x : A.n′),n〉 ↓ u

〈H, let x : A = n in n′〉 ↓ u

E-LETVALUE

〈H,n[v/x]〉 ↓ u

〈H ◦ (x : A.n),↓v〉 ↓ u

E-APP

〈H ◦ (rec f{e} : {C},� n2),n1〉 ↓ u

〈H,↓(rec f{e} : {C}) n〉 ↓ u

E-APPV-FST

〈H ◦ (rec f{e} : {C}, ↓v �),n〉 ↓ u

〈H ◦ (rec f{e} : {C},� n),↓v〉 ↓ u

E-APPV-SND

unfold(e) : 〈∆〉A←− u,v --[Σ] n 〈H,n〉 ↓ u′

〈H ◦ (rec f{e} : {〈∆〉A→ [Σ]B}, u �),↓v〉 ↓ u′

E-HDLCMD-FST

C = 〈∆〉A→ [Σ]B c : A1→ B1 ∈ ∆1(∅) 〈H ◦ (rec f{e} : {C}, (H ′ ? c v) �),n〉 ↓ u

〈H ◦ (rec f{e} : {C},� n),H ′ ? c v〉 ↓ u

E-HDLCMD-SND

c : A1→ B1 ∈ ∆2(∅) unfold(e) : 〈∆〉A←− u,H ′ ? c v --[Σ] n 〈H,n〉 ↓ u

〈H ◦ (rec f{e} : {〈∆〉A→ [Σ]B}, u �),H ′ ? c v〉 ↓ u

E-FORWARDCMD

c-stuck(F) 〈H,F •H ′ ? c v〉 ↓ u

〈H ◦F ,H ′ ? c v〉 ↓ u

E-IDCMD

c : A′→ B′ ∈ Σ

〈IdΣ,H ? c v〉 ↓ H ? c v

Figure 6.6: ELLA handler stack semantics
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M-HEAD

(ri : 〈∆i〉Ai←− ui --[Σ] θi)i=1,2

(r 7→ n :: e) : 〈∆〉A←− u --[Σ] θ(n)

M-TAIL

∃i = 1,2. ri : 〈∆i〉Ai←− ui --[Σ] θ =⇒ ⊥ e : 〈∆〉A←− u --[Σ] n

(r 7→ n :: e) : 〈∆〉A←− u --[Σ] n

M-VAR

x : A←− va [v/x]

M-BOOL

b ∈ {tt, ff}

b : bool←− ba ·

M-VALUE

p : A←− vaθ

p : 〈∆〉A←− v --[Σ] θ

M-CATCHALL-VAL

C = {〈ι〉unit→ [∆(Σ)]A}

〈x〉 : 〈∆〉A←− v --[Σ] [↑C((),() 7→ v)/x]

M-CATCHALL-REQ

C = {〈ι〉unit→ [∆(Σ)]A}

〈x〉 : 〈∆〉A←− H ? c v --[Σ] [↑C((),() 7→ H ? c v)/x]

M-COMMAND

c : A1→ B1 ∈ Σ p : A1←− vaθ C = {〈ι〉B1,〈ι〉unit→ [∆(Σ)]A}

〈c p→ z〉 : 〈∆〉A←− H ? c v --[Σ] θ[↑C(x,() 7→ H@↓x)/z]

Figure 6.7: ELLA Pattern Matching
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〈H,↓(rec f{e} : {C}) n〉 −→α 〈H ◦ (rec f{e} : {C},n2),n1〉
〈H, let x : A = n in n′〉 −→α 〈H ◦ (x : A.n′),n〉
〈H ◦ (x : A.n),↓v〉 −→β 〈H,n[v/x]〉

〈H ◦ (rec f{e} : {C},� n),↓v〉 −→α 〈H ◦ (rec f{e} : {C}, ↓v �),n〉
〈H ◦ (rec f{e} : {C}, u �),↓v〉 −→β 〈H,n〉

where C = 〈∆〉A→ [Σ]B if unfold(e) : 〈∆〉A←− u,v --[Σ] n

〈H ◦ (rec f{e} : {C},� n),H ′ ? c v〉 −→α 〈H ◦ (rec f{e} : {C}, (H ′ ? c v) �),n〉
where C = 〈∆〉A→ [Σ]B if c : Ac→ Bc ∈ ∆1(∅)

〈H ◦ (rec f{e} : {C}, u �),H ′ ? c v〉 −→β 〈H,n〉
where C = 〈∆〉A→ [Σ]B if c : Ac→ Bc ∈ ∆2(∅) and

unfold(e) : 〈∆〉A←− u,H ′ ? c v --[Σ] n

〈H ◦F ,H ′ ? c v〉 −→β 〈H,F •H ′ ? c v〉
if c-stuck(F)

Figure 6.8: ELLA small-step stack semantics

Lemma 6.5. Given · [Σ]-- H : [Σ′]A( B and · [Σ′]-- n : A then either

(a) H ≡ Id and n≡ ↓v with · [Σ]-- v⇒ B;

(b) H ≡ Id and n≡H ′ ? c v with c : Ac→ Bc ∈ Σ, · [Σ′]-- v⇒ Ac, · [Σ]-- H ′ : [Σ′]Bc( A

and c-stuck(H ′);

(c) ∃!C .〈H,n〉 −→ C ∧· [Σ]-- C : B.

Proof. By case analysis on the form of n using Proposition 6.4. For n ≡ ↓v and n ≡
H ′ ? c v we additionally perform a case analysis on H.

Lemma 6.6. 〈H,H ′@n〉 −→∗α 〈H ◦H ′,n〉.

Lemma 6.7. If 〈H1,n1〉 −→ 〈H2,n2〉 then 〈H ′ ◦H1,n1〉 −→ 〈H ′ ◦H2,n2〉

Proof. The statement follows from:

1. 〈H1,n1〉 −→β 〈H2,n2〉 =⇒ 〈H ′ ◦H1,n1〉 −→β 〈H ′ ◦H2,n2〉;

2. 〈H1,n1〉 −→∗α 〈H2,n2〉 =⇒ 〈H ′ ◦H1,n1〉 −→∗α 〈H ′ ◦H2,n2〉.

which follow by induction on the −→β and −→∗α premiss, respectively.
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6.2 Formalising Contexts

We develop the same machinery for observational behaviour as described in Chapter 4.

Namely, we define observational approximation to be parametric in the notion of con-

texts e.g. variable-capturing contexts (VCCs), value-substituting contexts (VSCs), etc.

Our grammar for contexts reflects the inferrable and checkable distinction made at the

term-level.

A term context N or M is a possibly-open term of arbitrary type containing zero or

more occurrences of a well-typed and well-scoped hole, where N ranges over check-

able term contexts and M ranges over inferrable term contexts. Analogously, a value

context V or W is a possibly-open value of arbitrary type containing zero or more oc-

currences of such a hole. Finally, a computation context E is a possibly-open computa-

tion of arbitrary computation type containing zero or more occurrences of a well-typed

and well-scoped hole.

Figure 6.9 presents the typing rules for VCCs; the rules for VSCs are analogous

except in the case of the hole which carries a well-typed substitution. The form of

a well-typed and well-scoped context N is Γ0 [Σ0]-- N : 〈〈Γ1 [Σ1]-- A〉〉VCCB, which says

that term context N checks against type B in environment Γ0 and ambient ability Σ0

and contains zero or more occurrences of a hole of type A in an environment Γ1 and

ambient ability Σ1. We enforce the restriction that the hole must be a checkable term to

simplify the definition of contexts. We can always place an inferrable term in the hole

using the explicit injection ‘↓’ operator. In cases where this restriction prevents us from

representing a certain context, e.g. put 〈〈−〉〉 for command put : bool -> unit,

we can always convert it to a valid context which checks the hole against its type using

let, e.g. let x : bool = 〈〈−〉〉 in put x.

Hence, operations on contexts are defined only for checkable term contexts. In

particular, we define context instantiation, denoted by N [n]VCC, for any (checkable)

term context N and (checkable) term n by structural traversal on N .

Another simplification to the grammar of term contexts is the VCCCOMMAND rule

where the command invocation is not paired with a handler stack (or its VCC equiva-

lent). This does not affect the expressive power of contexts because stacks are simply

an alternative representation to evaluation contexts; they do not add expressivity. How-

ever, context instantiation must take this discrepancy into account:

(c V )[n], Id ? c V [n]
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Γ0 [Σ0]-- M ⇒ 〈〈Γ1 [Σ1]-- A〉〉VCCB

VCCTHUNK

Γ0, f : {C}`E : 〈〈Γ1 [Σ1]-- A〉〉VCCC

Γ0 [Σ0]-- (rec f{E} : {C})⇒ 〈〈Γ1 [Σ1]-- A〉〉VCC{C}

VCCAPP

Γ0 [Σ0]-- V ⇒ 〈〈Γ1 [Σ3]-- A3〉〉VCC{〈∆〉A→ [Σ]B}
∆i(Σ0) = Σi (Γ0 [Σi]-- Ni : 〈〈Γ1 [Σ3]-- A3〉〉VCCAi)i=1,2

Γ0 [Σ0]-- V N ⇒ 〈〈Γ1 [Σ3]-- A3〉〉VCCB

Γ0 [Σ0]-- N : 〈〈Γ1 [Σ1]-- A〉〉VCCB

VCCHOLE

Γ [Σ]-- 〈〈−〉〉 : 〈〈Γ [Σ]-- A〉〉VCCA

VCCTRM

Γ0 [Σ0]-- n : B

Γ0 [Σ0]-- trm n : 〈〈Γ1 [Σ1]-- A〉〉VCCB

VCCSWITCH

Γ0 [Σ0]-- M ⇒ 〈〈Γ1 [Σ1]-- A〉〉VCCB B = B′

Γ0 [Σ0]-- ↓M : 〈〈Γ1 [Σ1]-- A〉〉VCCB′

VCCCOMMAND

c : B→ B′ ∈ Σ0 Γ0 [Σ0]-- V ⇒ 〈〈Γ1 [Σ1]-- A〉〉VCCB

Γ0 [Σ0]-- c V : 〈〈Γ1 [Σ1]-- A〉〉VCCB′

VCCLET

Γ0 [Σ0]-- N1 : 〈〈Γ1 [Σ1]-- A1〉〉VCCA Γ0,x : A [Σ0]-- N2 : 〈〈Γ1 [Σ1]-- A1〉〉VCCB

Γ0 [Σ0]-- let x : A = N1 in N2 : 〈〈Γ1 [Σ1]-- A1〉〉VCCB

Γ0`E : 〈〈Γ1 [Σ1]-- A〉〉VCCC

VCCCOMP

(ri, j : Tj --[Σ0] Γ
′
i, j)i, j (ri, j)i, j covers (Tj) j

(Γ0,(Γ
′
i, j) j [Σ0]-- Ni : 〈〈Γ1 [Σ1]-- A〉〉VCCB)i

Γ0` r 7→N : 〈〈Γ1 [Σ1]-- A〉〉VCC(T → [Σ0]B)

Figure 6.9: ELLA typing rules for variable-capturing contexts
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Now we define observational approximation for ELLA. The key depature from

our definition in Chapter 4 is that for ELLA, we need only observe termination rather

than the inspection of ground values for λ→FG — a consequence of introducing general

recursion.

Definition 6.8 (K Approximation). For terms n1,n2 of type A in environment Γ and

ambient Σ:

Γ ` n1 ⪍K n2 : [Σ]A

asserts that for all program contexts, [∅]--P : 〈〈Γ [Σ]-- A〉〉K unit,

P [n1]
K ⇓ =⇒ P [n2]

K ⇓

where evaluation of a closed term n, written n ⇓ , is defined by:

n ⇓ , 〈Id,n〉 ↓

where 〈Id,n〉 ↓ , ∃u.〈Id,n〉 ↓ u.

Simply observing equitermination for all unit-valued contexts is sufficient. For

any other ELLA ground type, we can construct an operator which will distinguish

distinct values via pattern matching. Again, value-substituting contexts are the largest

class of contexts and thus form our definition of observational approximation.

Definition 6.9. Let observational approximation be K approximation with K = VSC.

Unsurprisingly, VCCs are contained within VSCs. The proof is the same as for

Lemma 4.9.

Lemma 6.10. Γ ` n1 ⪍VSC n2 : [Σ]A =⇒ Γ ` n1 ⪍VCC n2 : [Σ]A.

We have an analogous way of closing a VCC using a substitution that we presented

in Chapter 4 (Definition 4.12).

Definition 6.11 (Let-Redexes from Substitution). Let θ be a Γ0-closing substitution.

For Γ0 [Σ0]-- D : 〈〈Γ [Σ]-- A〉〉VCCB, define Dθ by induction on the size of Γ0:

Dθ =


D Γ0 = ·
(let x : A = v in D)θ′ Γ0 = Γ′0,x : A and

θ = θ′[v/x]

Dθ represents a new (closed) VCC obtained from D by constructing a sequence of let

redexes on the outside of D from the substitution θ. For Γ [Σ]-- n : A, let nθ denote the

analogous operation for constructing a closed term from n and θ.
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L-REFL

n s n

L-RED

n s let x : A = ↓v in n′

n s n′[v/x]

L-LET

n1 
s n′1

let x : A = n1 in n2 
s let x : A = n′1 in n2

L-APP

n1 
s n′1 n2 

s n′2

↑e n1 n2 
s ↑e n′1 n′2

Figure 6.10: ELLA iterated reduction of let bindings (term sequencing)

Figure 6.10 defines iterated reduction of term sequencing. Just like the  S relation

in Chapter 4,  s respects the evaluation semantics of ELLA. Furthermore, we have

the result

Lemma 6.12. For Γ [Σ]-- n : A, and Γ-closing substitution θ, then we have

nθ s
θ(n)

Proof. By induction on the size of environment Γ and then case analysis on θ.

Case Γ = · and θ = ·. Immediate.

Case Γ = Γ′,x : A and θ = θ′[v/x].

By Definition 6.11 our goal expands to showing:

(let x : A = v in n)θ′  s
θ
′(n[v/x])

From the induction hypothesis we know:

(let x : A = v in n)θ′  s θ′(let x : A = v in n)

≡ let x : A = v in θ′(n) (v is a closed value, x /∈ dom(Γ′))

 s θ′(n)[v/x] (L-RED)

Lemma 6.13. For all Γ [Σ]-- n : A, Γ0 [Σ0]-- C : 〈〈Γ [Σ]-- A〉〉VCCB, and Γ0-closing substitu-

tions, θ, we have

(C θ)[n]≡ (C [n])θ

Proof. By induction on the size of the environment Γ0.
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Like the frame stack development in Chapter 4, it turns out that we need only con-

sider the class of the contexts corresponding to the frames comprising handler stacks.

Definition 6.14 (CIU Contexts). Let CIU contexts be the class of contexts defined by

the following inference rules:

CIUHOLE

θ : Γ1 � Γ0

Γ0 [Σ0]-- 〈〈θ−〉〉 : 〈〈Γ1 [Σ1]-- A〉〉CIUA

CIULET

Γ0 [Σ0]-- D : 〈〈Γ1 [Σ1]-- A1〉〉CIUA Γ0,x : A [Σ0]-- n : B

Γ0 [Σ0]-- let x : A = D in n : 〈〈Γ1 [Σ1]-- A1〉〉CIUB

CIUAPP-FST

C = {〈∆〉A′→ [Σ0]B} Γ0, f : {C}` e :C (∆i(Σ0) = Σ
′
i)i=1,2

Γ0 [Σ′1]-- D : 〈〈Γ1 [Σ1]-- A1〉〉CIUA′1 Γ0 [Σ′2]-- n : A′2

Γ0 [Σ0]-- (↑Ce) D n : 〈〈Γ1 [Σ1]-- A1〉〉CIUB

CIUAPP-SND

C = {〈∆〉A′→ [Σ0]B} Γ0, f : {C}` e :C (∆i(Σ0) = Σ
′
i)i=1,2

Γ0 [Σ′1]-- n : A′1 Γ0 [Σ′2]-- D : 〈〈Γ1 [Σ1]-- A1〉〉CIUA′2

Γ0 [Σ0]-- (↑Ce) n D : 〈〈Γ1 [Σ1]-- A1〉〉CIUB

Definition 6.15. Define the operation� :CIU→VCC, which transforms a CIU context

into a closed VCC, by structural recursion on the CIU context:

�(〈〈θ−〉〉) = 〈〈−〉〉θ

�(let x : A = D in n) = let x : A = �(D) in n

�(↑e D n) = ↑e �(D) n

�(↑e n D) = ↑e n �(D)

Lemma 6.16. For Γ [Σ]-- n : A and · [Σ]-- P : 〈〈Γ [Σ]-- A〉〉CIUB,

(�(P ))[n] s P [n]

Proof. The proof proceeds by induction on the structure of P .

Case P = 〈〈θ−〉〉.

By definition, �(P ) = 〈〈−〉〉θ. We calculate:

(〈〈−〉〉θ)[n] ≡ nθ by Lemma 6.13

 s θ(n) by Lemma 6.12.
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Case P = let x : B′ = Q in n′.

By the induction hypothesis, (�(Q ))[n] s Q [n]. We calculate:

(let x : B′ = �(Q ) in n′)[n] = let x : B′ = (�(Q ))[n] in n′

 s let x : B′ = Q [n] in n′ by I.H. and L-LET

= P [n] as required.

Case P = ↑e Q n′.

By the induction hypothesis, (�(Q ))[n] s Q [n]. We calculate:

(↑e �(Q ) n′)[n] = ↑e (�(Q ))[n] n′

 s ↑e Q [n] n′ by I.H., L-APP, and L-REFL for n′

= P [n] as required.

Case P = ↑e n Q .

This case is similar to the previous one.

Lemma 6.17.

Γ ` n1 ⪍VCC n2 : [Σ]A =⇒ Γ ` n1 ⪍CIU n2 : [Σ]A

Proof. Assume given a CIU context P . Instantiate the premiss with �(P ). The proof

proceeds by induction on the structure of P using Lemma 6.16 and closure of evalua-

tion under  s .

6.2.1 Handler Stacks and CIU Contexts

We establish a connection between the left action over a handler stack and CIU context

instantiation.

Definition 6.18. Let H〈〈@〉〉P be the operation which takes a handler stack H and a

closed CIU context P to produce a closed CIU context:

Id@P , P
(H ◦ (x : A.n′))@P , H@(let x : A = P in n′)

(H ◦ (rec f{e} : {C},� n))@P , H@((↑Ce P n)

(H ◦ (rec f{e} : {C}, u �))@P , H@((↑Ce u P )
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Using the above operation, we have the following “commutativity” result for con-

text instantiation and left action over a handler stack. Regardless of the order of the

operations, the same term arises.

Lemma 6.19. (H〈〈@〉〉P )[n]CIU ≡ H@(P [n]CIU)

Proof. By induction on the handler stack H.

6.3 Relational Reasoning

We have formalised a notion of contexts for ELLA together with a definition of contex-

tual approximation parametric in the notion of context. From this, we defined observa-

tional approximation to be contextual approximation in which the contexts are VSCs.

Now we want to define applicative and logical notions of behavioural approximation

for ELLA to complete our triangle of relations.

In this section we introduce our relations for reasoning about ELLA programs based

on FOLµ. presented in Chapter 5. The signature Ω of FOLµ. is instantiated with a

universe of codes corresponding to the phrase classes of ELLA defined in Figure 6.1,

and the evaluation and small-step reduction relations defined on configurations.

6.3.1 Basic Observable

Both of our structural relations rely on a relation capturing basic observable behaviour

similar to ground equivalence (Definition 4.6) for λ→FG. However, just like contex-

tual approximation for ELLA, our basic observation is equitermination of unit-valued

configurations, not equality on ground values.

As discussed previously, we have elected to not stratify our evaluation relations

with step-indices (cf. Pitts [2010]), instead we define a basic observation relation by

recursion on the step-index. The recursive occurrence appears under the . modality to

ensure the definition is well-founded.

Definition 6.20 (Basic Observable in FOLµ.). The basic observable relation is the fol-

lowing fixed-point predicate between pairs of closed, pure, unit-valued configurations.

O, µP : Config×Config.(C1 : Config,C2 : Config).φ

where Config , Stk×Trm↓ and

φ, (C1 ≡ 〈Id,↓()〉∧C2 ↓)∨ (∃ C ′1 : Config.C1 −→ C ′1∧.P(C ′1,C2)).
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It is straightforward to show that the above definition satisfies the contractivity

constraint (Example 5.9) required of a fixed-point. Note that for brevity we have omit-

ted the necessary typing and scoping constraints on configurations to ensure they are

closed, pure, unit-valued configurations. These constraints arise as arguments to the

codes, e.g. n : Trm↓ Γ Σ A specifies the well-typed and-scoped term Γ [Σ]-- n : A.

We simplify the definition slightly for readability purposes, omitting sort ascrip-

tion on binders and conflating O with the predicate variable P, yielding the following

definition. We adopt the terminological convention of using “relation” for a binary

predicate in FOLµ..

Definition 6.21. The basic observable relation is the following binary predicate be-

tween pairs of closed, pure, unit-valued configurations.

O(C1,C2), (C1 ≡ 〈Id,↓()〉∧C2 ↓)∨ (∃ C ′1.C1 −→ C ′1∧.O(C ′1,C2)).

Definition 6.21 captures approximate behaviour between configurations. That is,

C1 behaviourally approximates C2 if and only if C1 terminates then so does C2
1. We

establish the following adequacy result which captures this property of O.

Lemma 6.22 (Adequacy). If O(C1,C2) and C1 ↓ then C2 ↓

Proof. By the correspondence between termination and small-step semantics, we know

there exists a j such that C1−→ j 〈Id,↓()〉. The result follows by induction on the num-

ber of reduction steps j.

Remark 6.23. Definition 6.21 defines our basic observable recursively using the .

modality. A simpler formulation of equi-termination such as:

C1 ↓ () =⇒ C2 ↓ () (?)

does not suffice because it fails to marry the implicit step-index with the reduction

steps of the configuration C1. This connection is essential to correctly model recur-

sive features using step-indexing and justify our appeals to the Löb rule described in

Chapter 5. An alternative formulation could make use of (?) for non-recursive β-steps,

e.g. S-LETVALUE, and reserve step-indexing only for the recursive features. This ap-

proach was taken by Dreyer et al. [2011] but has limited benefit in our ELLA setting

due to the small number of rules to which such a condition would apply.

1It is an asymmetric relation (cf. ground equivalence of Definition 4.6). As mentioned previously,
we only consider the approximations in this dissertation so this asymmetric definition is sufficient.
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Remark 6.24. Theorem statements in this chapter of the form “If X1 and X2 and . . . and

Xn then Y ” should be interpreted within the logical framework provided by MLUTT, in

the same sense of the discussion regarding inference rules (Section 5.2), i.e. interpreted

using the function-space of MLUTT, rather than the logic FOLµ.. If a statement is to be

understood entirely within FOLµ. logic, we use the main judgement X  Y , assuming

appropriate injections for X and Y into IProp.

Lemma 6.25. If O(C1,C2) and O(C2,C3) then O(C1,C3).

Proof. By Löb induction, case analysis on the first premiss, and Lemma 6.22.

Lemma 6.26. O is closed under expansion:

1. C1 −→ C ′1  .O(C ′1,C2) =⇒ O(C1,C2)

2. C2 −→ C ′2 O(C1,C ′2) =⇒ O(C1,C2)

Proof. Part 1 holds by definition while Part 2 is by Löb induction.

Recall that administrative steps rearrange the components of a configuration but do

not alter the term a configuration represents. Given Definition 6.21, we may perform

a finite but arbitrary number of administrative steps without decreasing the step-index.

This is important for rearranging configurations in proofs in much the same way as one

would informally rearrange an evaluation context paired with its instantiating term.

Lemma 6.27. The basic observable approximation satisfies the properties:

1. C1 −→∗α C2 O(C1,C3) ⇐⇒ O(C2,C3)

2. C1 −→∗α C2 O(C3,C1) ⇐⇒ O(C3,C2)

Proof. Consider each property separately:

1. For⇐=, perform a case analysis on the approximation assumption. For =⇒, we

appeal to the property:

C1 −→∗α C2∧C1 −→ C ′1 =⇒ C2 −→ C ′1

which is proven using determinacy of reduction.

2. For⇐=, perform a case analysis on the approximation assumption. For =⇒, we

additionally appeal to Löb induction.
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From the above property, we establish a useful property of observable behaviour

between the left action over a handler stack and stack concatenation.

Corollary 6.28.

1. O(〈H ◦H ′,n〉,C ) ⇐⇒ O(〈H,H ′@n〉,C )

2. O(C ,〈H ◦H ′,n〉) ⇐⇒ O(C ,〈H,H ′@n〉)

Proof. By Lemma 6.27 using Lemma 6.6.

6.3.2 Logical Approximation

The definition of the logical approximation relation is presented in Figure 6.11. We

extend biorthogonality to the >>-lifting of normal forms, given by UJ − K, over han-

dler stacks, given by SJ − K. All of the relations with the exception of ≈, which is

an MLUTT-level definition, are defined within the FOLµ. logic as fixed-point predicates

but we have presented them as mutually recursive function definitions for the sake

of readability. For these definitions to be well-founded, they must be contractive in

their recursive occurrences. Admittedly, it is not immediately apparent that they are

contractive given their nontrivial mutually recursive nature. We provide a proof of con-

tractivity for the relations in Figure 6.11 in Appendix B to avoid disturbing the flow

of our relational reasoning development by presenting it here. Our proof mostly fol-

lows the mechanised development by Biernacki et al. [2018] but with a few differences

due to the generalisation of function application to incorporate effect handling, and the

absence of effect rows and effect polymorphism.

In this section, we prove some properties for reasoning about logical term approx-

imation, and show logical approximation is closed under all VSCs, yielding one side

of our triangulation result.

Lemma 6.29. The following properties hold for any type A and ability Σ:

1. VJ A K/(v1,v2)  TJ [Σ]A K/(↓v1,↓v2)

2. UJ [Σ]A K/(u1,u2)  TJ [Σ]A K/(u1,u2)

Proof. Both parts follow from the definitions of TJ [Σ]A K/, SJ [Σ]A K/ and UJ [Σ]A K/.
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Component Relations

VJ τ K/(v1,v2) , v1 ≡ v2

VJ {C} K/(↑e1,↑e2) , ∀u1,u2,n1.
∧

i(UJ [∆i(Σ)]Ai K/(u1,i,u2,i))∧ e′1 : 〈∆〉A←− u1 --[Σ] n1 =⇒
∃n2. e′2 : 〈∆〉A←− u2 --[Σ] n2∧.TJ [Σ]B K/(n1,n2)

where C = 〈∆〉A→ [Σ]B, e′i = unfold(ei), i = 1,2

TJ [Σ]A K/(n1,n2) , ∀H1,H2.SJ [Σ]A K/(H1,H2) =⇒ O(〈H1,n1〉,〈H2,n2〉)

SJ [Σ]A K/(H1,H2) , ∀u1,u2.UJ [Σ]A K/(u1,u2) =⇒ O(〈H1,u1〉,〈H2,u2〉)

UJ [Σ]A K/(↓v1,↓v2) , VJ A K/(v1,v2)

UJ [Σ]A K/(u1,u2) , c : Ac→ Bc ∈ Σ ∧ (c-stuck(Hi))i=1,2∧.VJ Ac K/(v1,v2)∧
∀w1,w2. .VJ Bc K/(w1,w2) =⇒ .TJ [Σ]A K/(H1@↓w1,H2@↓w2)

where ui = Hi ? c vi, i = 1,2

GJ Γ K/(θ1,θ2) , ∀(x : A) ∈ Γ. VJ A K/(θ1(x),θ2(x))

Logical Relation

Γ ` n1 /trm n2 : [Σ]A , θ1,θ2 : Γ � · GJ Γ K/(θ1,θ2) =⇒ TJ [Σ]A K/(θ1(n1),θ2(n2))

and similar for /val,/n f ,/stk

Γ ` n1 ≈ n2 : [Σ]A , Γ ` n1 / n2 : [Σ]A×Γ ` n2 / n1 : [Σ]A

Figure 6.11: ELLA Logical Approximation
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By treating the arguments to TJ − K/ as H@n for some configuration C = 〈H,n〉,
we may show the relation is closed under expansion.

Lemma 6.30. TJ − K/ is closed under expansion:

1. 〈H1,n1〉 −→ 〈H ′1,n′1〉  .TJ [Σ]A K/(H ′1@n′1,n2) =⇒ TJ [Σ]A K/(H1@n1,n2)

2. 〈H2,n2〉 −→ 〈H ′2,n′2〉  TJ [Σ]A K/(n1,H ′2@n′2) =⇒ TJ [Σ]A K/(n1,H2@n2)

Proof. By Lemmas 6.26 and 6.7, and Corollary 6.28.

Lemma 6.31. Given H,H ′ such that c-stuck(H) and c-stuck(H ′), let j denote the

length of H. We have,

1. . jTJ [Σ]A K/((H ◦H ′)? c v,n)  TJ [Σ]A K/(H@(H ′ ? c v),n)

2. TJ [Σ]A K/(n,(H ◦H ′)? c v)  TJ [Σ]A K/(n,H@(H ′ ? c v))

Proof. By induction on H using Lemma 6.30.

Definition 6.32. For handler stacks H1,H2 such that (· [Σ′]-- Hi : [Σ]A( B)i=1,2, define

partial logical stack approximation at [Σ′]B, written PJ [Σ]A [Σ′]B K/(H1,H2), as

∀u1,u2.UJ [Σ]A K/(u1,u2) =⇒ TJ [Σ′]B K/(H1@u1,H2@u2)

and we have the open extension Γ ` H1 /prt H2 : [Σ]A [Σ′]B defined by:

∀θ1,θ2.GJ Γ K/(θ1,θ2) =⇒ PJ [Σ]A [Σ′]B K/(θ1(H1),θ2(H2))

Using partial stack approximation we can decompose a complex term-level ap-

proximation into two simpler proof obligations.

Lemma 6.33 (Term Decomposition).

PJ [Σ]A [Σ′]B K/(H1,H2),TJ [Σ]A K/(n1,n2)  TJ [Σ′]B K/(H1@n1,H2@n2)

Proof. By definition using Corollary 6.28.

We can simplify relational reasoning about partial stacks since it suffices to con-

sider their behaviour only with respect to values (of the appropriate type), and com-

mands handled within the partial handler stacks. The following lemmas capture this

simplification.

First, stacks which do not handle any effects are related as partial stacks if they

agree for all related values and are stuck for all commands in the ambient ability.
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Lemma 6.34. For all handler stacks H1,H2 such that (· [Σ]-- Hi : [Σ]A( B)i=1,2, and

propositions Φ, the following inference rule is derivable:

∀c : A1 → B1 ∈ Σ, c-stuck(Hi)i=1,2

Φ,VJ A K/(v1,v2)  TJ [Σ]B K/(H1@↓v1,H2@↓v2)

Φ  PJ [Σ]A [Σ]B K/(H1,H2)

Proof. By Löb induction assume .PJ [Σ]A [Σ]B K/(H1,H2) holds. By definition, we

assume (i) UJ [Σ]A K/(u1,u2) and require to show TJ [Σ]B K/(H1@u1,H2@u2). Now

consider the forms of u1 and u2 such that (i) holds.

Case u1 and u2 are values. Then the result follows by our premiss for plugging related

values into the stacks.

Case u1 = H ′1 ? c v1 and u2 = H ′2 ? c v2 for some c : Ac→ Bc ∈ Σ.

We require to show

TJ [Σ]B K/(H1@(H ′1 ? c v1),H2@(H ′2 ? c v2))

i.e. .|H1|TJ [Σ]B K/((H1 ◦H ′1)? c v1,(H2 ◦H ′2)? c v2) (by Lemma 6.31)

i.e. UJ [Σ]B K/((H1 ◦H ′1)? c v1,(H2 ◦H ′2)? c v2) (by mono & Lemma 6.29(2))

By definition of UJ [Σ]B K/, given .VJ Bc K/(w1,w2), it remains to show:

.TJ [Σ]B K/((H1 ◦H ′1)@↓w1,(H2 ◦H ′2)@↓w2)

i.e. .TJ [Σ]B K/(H1@(H ′1@↓w1),H2@(H ′2@↓w2))

Applying Lemma 6.33 and the Löb induction hypothesis, we are left to prove:

.TJ [Σ]A K/(H ′1@↓w1,H ′2@↓w2)

which follows from (i).

Next, we define a normal form property for handler stacks that pertains to a spec-

ified command (Definition 6.35). For handler stacks which handle a collection of ef-

fects, we use the normal form property to express progress for command invocations

(Lemma 6.37).

Definition 6.35. A pair of handler stacks (H1,H2) are normal with respect to a com-

mand c : Ac→ Bc ∈ Σ at type [Σ]A, written c-normal(H1,H2, [Σ]A), if c-stuck(H1),

c-stuck(H2) and for all .VJ Bc K/(w1,w2),

.TJ [Σ]A K/(H1@↓w1,H2@↓w2).
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Remark 6.36. Do not confuse the above c-normal property on pairs of handler stacks

with the Σ-normal property on normal forms. The latter asserts a normal form is either

a value or stuck with respect to a command in Σ, whereas the former specifies a notion

of observable progress for c-stuck handler stacks.

Lemma 6.37. Given handler stacks H1,H2 such that:

1. VJ A K/(v1,v2) =⇒ TJ [Σ]B K/(H1@↓v1,H2@↓v2));

2. ∀c : Ac → Bc /∈ ∆(∅), c-stuck(H1) and c-stuck(H2);

3. ∀c : Ac → Bc ∈∆(∅), .VJ Ac K/(v1,v2) and H ′1,H
′
2 such that c-normal(H ′1,H

′
2, [∆(Σ)]A)

then

TJ [Σ]B K/(H1@(H ′1 ? c v1),H2@(H ′2 ? c v2));

then PJ [∆(Σ)]A [Σ]B K/(H1,H2).

Proof. There are three distinct cases to consider based on the particular normal forms

plugged into the contexts. Condition (1) handles the value normal forms. Condition (3)

handles the case for stuck terms where the command c is in ∆. For all other commands

the proof is identical to the stuck term case of Lemma 6.34.

The following result regarding pattern matching is important for establishing /trm

compatible with the term formers of ELLA.

Lemma 6.38. Given p : AaΓ, and v1 and θ1 such that p : A←− v1aθ1 then for all v2:

1. VJ A K/(v1,v2)  ∃θ2.p : A←− v2aθ2∧GJ Γ K/(θ1,θ2)

Similarly, given r : 〈∆〉A --[Σ] Γ, and u1 and θ1 such that r : 〈∆〉A←− u1 --[Σ] θ1 then for

all u2:

2. UJ [∆(Σ)]A K/(u1,u2)  ∃θ2.r : 〈∆〉A←− u2 --[Σ] θ2∧.GJ Γ K/(θ1,θ2)

Proof. By simultaneous induction on the pattern matching derivations p : A←− v1aθ1

and r : 〈∆〉A←− u1 --[Σ] θ1. We consider the interesting case of a request pattern below.

Case M-COMMAND: 〈c p→ z〉 : 〈∆〉A←− H1 ? c v1 --[Σ] θ1[↑C(x,() 7→ H1@↓x)/z]

Given UJ [∆(Σ)]A K/(H1 ? c v1,u2), we require to prove:

∃θ2.r : 〈∆〉A←− u2 --[Σ] θ2∧.GJ Γ K/(θ1,θ2) (?)
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Appeal to the inductive hypothesis for (1) to obtain substitutions that are approx-

imate for the command argument, i.e. for c : Ac→ Bc we have,

UJ [∆(Σ)]A K/(H1 ? c v1,H2 ? c v2) (i)

from which we obtain values .VJ Ac K/(v1,v2) matching pattern p. Furthermore,

by Proposition 6.4, we deduce there exists θ2 such that p : A←− v2aθ2 and

hence (ii) .GJ Γ K/(θ1,θ2).

Instantiate (?) with the substitution θ2[↑C(x,() 7→ H2@↓x)/z]. Using (ii) our

obligation reduces to showing:

VJ {〈ι〉Bc,〈ι〉unit→ [∆(Σ)]A} K/(↑C(x,() 7→ H1@↓x),↑C(x,() 7→ H2@↓x))

By definition this reduces to showing for all VJ Bc K/(w1,w2):

.TJ [∆(Σ)]A K/(H1@↓w1,H2@↓w2)

which follows from (i).

Lemma 6.39. Logical approximation is closed under the compound term formers (Fig-

ure 6.12).

Proof. By Lemmas 6.29, 6.33 and 6.34.

We have shown that logical approximation is closed under all term formers in the

language. From this fact, we are able to establish the fundamental property of logical

relations. That is, the relation is reflexive.

Lemma 6.40. Logical approximation is reflexive:

1. Γ ` w /val w : [Σ]A;

2. Γ ` n /trm n : [Σ]A;

3. Γ ` H /stk H : [Σ]A;

4. Γ ` H /prt H : [Σ]A [Σ′]B;

5. Γ ` u /n f u : [Σ]A.
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C-APP

VJ {〈∆〉A→ [Σ]B} K/(v1,v2)

TJ [∆1(Σ)]A1 K/(n1,n2) TJ [∆2(Σ)]A2 K/(n′1,n
′
2)

TJ [Σ]B K/(↓(v1 n1 n′1),↓(v2 n2 n′2))

C-COMMAND

c : Ac→ Bc ∈ Σ (c-stuck(Hi))i=1,2 PJ [Σ′]Bc [Σ]B K/(H1,H2)

VJ A K/(v1,v2)

TJ [Σ]B K/(H1 ? c v1,H2 ? c v2)

C-LET

TJ [Σ]A K/(n1,n′1) x : A ` n2 /
trm n′2 : [Σ]B

TJ [Σ]B K/(let x : A = n1 in n2, let x : A = n′1 in n′2)

Figure 6.12: TJ − K closed under the compound term formers

Proof. By simultaneous induction on the derivations:

Γ [Σ]-- w : A Γ [Σ]-- n : A Γ [∅]-- H : [Σ]A( unit

Γ [Σ′]-- H : [Σ]A( B Γ [Σ]-- u : A

using Lemma 6.39 for (2). Note that, for Γ ` ↑e /val ↑e : {C} in (1) we use Lemma 6.38.

Part (4) is by Lemma 6.29(2), term decomposition (Lemma 6.33), Lemma 6.39,

and the inductive hypothesis for (2). Part (5) follows from the inductive hypotheses for

(1) and (4). For (3), we perform a further case analysis on the possible normal forms

and appeal to the inductive hypothesis for (2). The case for H = Id is immediate by

definition, we consider the other cases below whilst eliding approximate substitutions

since they are just threaded throughout.

Case H = H ′ ◦ (x : A.n).

There are two cases to consider depending on the possible normal forms. Sup-

pose we have value normal forms: UJ [Σ]A K/(w1,w2). Then we require to

show:

O(〈H,w1〉,〈H,w2〉)

which follows by Lemma 6.26, and the inductive hypotheses for H ′ and (2).

Now suppose we have normal forms (i) UJ [Σ]A K/(H1 ? c v1,H2 ? c v2). We
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require to show:

O(〈H,H1 ? c v1〉,〈H,H2 ? c v2〉)
i.e. .O(〈H ′,(x : A.n)•H1 ? c v1〉,〈H ′,(x : A.n)•H2 ? c v2〉) by Lemma 6.26

by the inductive hypothesis for H ′ it suffices to show (assuming c : Ac→ Bc ∈ Σ)

for all .VJ Bc K/(w1,w2),

.TJ [Σ]A K/(((x : A.n)•H1)@↓w1,((x : A.n)•H2)@↓w2)

i.e. .TJ [Σ]A K/((Id ◦ (x : A.n))@(H1@↓w1),(Id ◦ (x : A.n))@(H2@↓w2))

by term decomposition (Lemma 6.33) and (i) it remains to show:

.PJ [Σ]A [Σ]B K/(Id ◦ (x : A.n), Id ◦ (x : A.n))

and the result follows by the inductive hypothesis for (4).

Case H = H ′ ◦ (rec f{e} : {C},� n) where C = 〈∆〉A→ [Σ]B.

Again, we consider the possible normal forms paired with H. Consider the case

when UJ [∆1(Σ)]A1 K/(H1 ? c v1,H2 ? c v2) s.t. c : Ac → Bc ∈ ∆1. We have to

show:
O(〈H,H1 ? c v1〉,〈H,H2 ? c v2〉)

i.e. .O(〈H ′1,n〉,〈H ′2,n〉) by Lemma 6.26

where H ′i = H ′ ◦ (rec f{e} : {C}, (Hi ? c vi) �)

by the inductive hypothesis for (2) we require to show:

.SJ [∆2(Σ)]A2 K/(H ′1,H
′
2)

That is, given .UJ [∆2(Σ)]A2 K/(u1,u2) we must show

.O(〈H ′1,u1〉,〈H ′2,u2〉)

If ui = wi or ui = H ′′i ? c′ wi for c′ : A′c→ B′c /∈ ∆2 then we proceed similarly to

the previous case. Otherwise, c′ : A′c→ B′c ∈ ∆2 and we apply Lemma 6.26 using

(S-HDLCMD-SND) with Proposition 6.4. The result then follows by inductive

hypothesis for H ′ and (2).

Case H = H ′ ◦ (rec f{e} : {C}, u �).

By similar reasoning to the above two cases.

From Lemmas 6.40 and 6.39 we get closure of our logical relation under VSCs.

Lemma 6.41. If Γ1 ` n1 /trm n2 : [Σ1]A and Γ0 [Σ]-- N : 〈〈Γ1 [Σ1]-- A〉〉VSCB then

Γ1 `N [n1] /
trm N [n2] : [Σ1]B.
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Component Relations

VJ τ K.(v1,v2) , v1 ≡ v2

VJ {C} K.(↑e1,↑e2) , ∀u,n1.e′1 : 〈∆〉A←− u --[Σ] n1 =⇒
∃n2. e′2 : 〈∆〉A←− u --[Σ] n2∧.TJ [Σ]B K.(n1,n2)

where C = 〈∆〉A→ [Σ]B, e′i = unfold(ei), i = 1,2

TJ [Σ]A K.(n1,n2) , ∀H.O(〈H,n1〉,〈H,n2〉)

SJ [Σ]A K.(H1,H2) , ∀u.O(〈H1,u〉,〈H2,u〉)

UJ [Σ]A K.(↓v1,↓v2) , VJ A K.(v1,v2)

UJ [Σ]A K.(u1,u2) , c : Ac→ Bc ∈ Σ ∧ (c-stuck(Hi))i=1,2∧.VJ Ac K/(v1,v2)∧
∀w. .TJ [Σ]A K/(H1@↓w,H2@↓w)

where ui = Hi ? c vi, i = 1,2

Logical Relation

Γ ` n1 .trm n2 : [Σ]A , θ : Γ � ·  TJ [Σ]A K.(θ(n1),θ(n2))

and similar for .val,.n f ,.stk

Γ ` n1 ∼ n2 : [Σ]A , Γ ` n1 . n2 : [Σ]A×Γ ` n2 . n1 : [Σ]A

Figure 6.13: ELLA Applicative Approximation

6.3.3 Applicative Approximation

The applicative approximation relation is presented in Figure 6.13. We define closed

value, term, stack and normal form relations. The relation on values is defined by re-

cursion on the type structure. This definition of applicative approximation is contained

within CIU approximation.

Lemma 6.42.
Γ ` n1 ⪍CIU n2 : [Σ]A

Γ ` n1 . n2 : [Σ]A

Proof. First prove:

 ∀H1,H2,n1,n2.(H1@n1 ⇓ ↓() =⇒ H2@n2 ⇓ ↓()) =⇒ O(〈H1,n1〉,〈H2,n2〉) (?)

by Löb induction and Lemma 6.5.
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For the main result, assume given a Γ-closing substitution θ and handler stack H. In

the CIU approximation assumption, set the context P to be H〈〈@〉〉〈〈θ−〉〉 and rewrite

using Lemma 6.19. The result follows by (?).

Lemma 6.43. Observational approximation implies applicative approximation.

Proof. By Lemmas 6.10, 6.17 and 6.42.

Occasionally, we can simplify the proof of an example approximation by using

the applicative notion rather than the logical one. We prove that both the applicative

and logical notions coincide. Such a correspondence permits us to reuse the properties

established for the logical relation in proofs which use the applicative notion.

First, it is straightforward to show that logical approximation implies applicative

approximation.

Lemma 6.44. Γ ` n1 /trm n2 : [Σ]A =⇒ Γ ` n1 .trm n2 : [Σ]A

Proof. By Lemma 6.40(3).

To show the converse, we again go via a “transitivity” property, reminiscent of

Howe’s method, which we introduced in Chapter 4. There is a slight difference in

the approach taken here since the introduction of step-indexing invalidates transitivity

at a fixed index. However, transitivity does hold at the limit. That is, for the rela-

tions quantified over all step-indices. As a stepping stone to this result, we prove a

transitivity-esque result which relies on the applicative approximation holding for all

step-indices.

Lemma 6.45. The following transitivity properties hold:

1. If VJ A K/(v1,v2) and ` v2 .val v3 : [∅]A then VJ A K/(v1,v3)

2. If TJ [Σ]A K/(n1,n2) and ` n2 .trm n3 : [Σ]A then TJ [Σ]A K/(n1,n3)

3. If SJ [Σ]A K/(H1,H2) and ` H2 .stk H3 : [Σ]A then SJ [Σ]A K/(H1,H3)

4. If UJ [Σ]A K/(u1,u2) and ` u2 .n f u3 : [Σ]A then UJ [Σ]A K/(u1,u3)

Proof. Part (1), is by case analysis on A using (2) for when A = {C}. For (2) &

(3), unfold definitions and apply Lemma 6.25. Part (4) is by definition using (1) and

(2).
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Lemma 6.46. Applicative approximation implies logical approximation:

If Γ ` n1 .
trm n2 : [Σ]A then Γ ` n1 /

trm n2 : [Σ]A

Proof. By Lemmas 6.40 and 6.45.

We establish analogues of the reasoning principles we developed for logical ap-

proximation. These are useful for proofs that go via the applicative approximation (see

Chapter 7).

Lemma 6.47. The following property hold for any type A and ability Σ:

1. VJ A K.(v1,v2)  TJ [Σ]A K.(↓v1,↓v2)

2. UJ [Σ]A K.(u1,u2)  TJ [Σ]A K.(u1,u2)

Proof. By Lemmas 6.40, 6.45 and 6.29.

Lemma 6.48. TJ − K. is closed under expansion:

1. 〈H1,n1〉 −→ 〈H ′1,n′1〉  .TJ [Σ]A K.(H ′1@n′1,n2) =⇒ TJ [Σ]A K.(H1@n1,n2)

2. 〈H2,n2〉 −→ 〈H ′2,n′2〉  TJ [Σ]A K.(n1,H ′2@n′2) =⇒ TJ [Σ]A K.(n1,H2@n2)

Proof. By Lemmas 6.26 and 6.7, and Corollary 6.28.

Definition 6.49. For handler stacks H1,H2 such that (· [Σ′]-- Hi : [Σ]A( B)i=1,2, define

partial applicative stack approximation at [Σ′]B, written PJ [Σ]A [Σ′]B K.(H1,H2),

as

∀u.· [Σ]-- u : A∧Σ-normal(u) =⇒ TJ [Σ′]B K.(H1@u,H2@u)

Lemma 6.50 (Term Decomposition).

PJ [Σ]A [Σ′]B K.(H1,H2)  TJ [Σ′]B K.(H1@n,H2@n)

Proof. By Lemmas 6.40 and 6.45 using Corollary 6.28.

Lemma 6.51. Given handler stacks H1,H2 such that:

1. ∀v : A.TJ [Σ]B K.(H1@↓v,H2@↓v);

2. ∀c : Ac → Bc /∈ ∆(∅), c-stuck(H1) and c-stuck(H2);
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3. ∀c : Ac → Bc ∈ ∆(∅), closed value v of type A, and H ′ such that c-stuck(H ′)

then

TJ [Σ]B K.(H1@(H ′ ? c v),H2@(H ′ ? c v));

then PJ [∆(Σ)]A [Σ]B K.(H1,H2).

Proof. Assume given · [Σ]-- u : A such that ∆(Σ)-normal(u). Perform case analysis on

the derivation of u. When u = ↓v and u = H ′ ? c v with c : Ac → Bc ∈ ∆, the result

follows by (1) and (3), respectively. Finally, for stuck terms where c : Ac→ Bc /∈ ∆,

the proof follows analogous reasoning to the corresponding case in Lemma 6.34.

6.4 ELLA’s Context Lemma

Lemmas 6.10 and 6.17 give the forward direction of the following context lemma for

ELLA.

Lemma 6.52 (Context Lemma).

Γ ` n1 ⪍VSC n2 : [Σ]A if and only if Γ ` n1 ⪍CIU n2 : [Σ]A

Now, we establish the remaining implication of the triangle. Namely that, from

Lemma 6.41, logical approximation is sound with respect to observational approxima-

tion.

Lemma 6.53. If Γ ` n1 /trm n2 : [Σ]A then Γ ` n1 ⪍VSC n2 : [Σ]A

Finally, we arrive at the triangulation result for ELLA.

Lemma 6.54 (Handler Stack Triangulation). Observational, applicative frame and

logical approximation coincide.

Proof. Using Lemmas 6.43, 6.46 and 6.53.

6.5 Discussion

We discuss the key influences from the literature behind the design of ELLA and its

reasoning principles. We also report on the progress made towards its formalisation in

AGDA.
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6.5.1 ELLA and FRANK

This chapter has introduced ELLA which aims to capture the essence of effectful pro-

gramming in FRANK. We can view ELLA as a target calculus for well-typed FRANK

programs, where instantiation of polymorphic definitions yields particular monomor-

phic variants. Although we have only described binary handlers in ELLA, a generali-

sation to an n-ary version would involve a straightforward adaption of the frames for

operators, and the ?-HDLCMD-FST and ?-APPV-FST rules. We leave the specifics for

future work.

6.5.2 ELLA Reasoning Principles

Regarding the paricular reasoning principles we have established, they are based heav-

ily on the properties Biernacki et al. [2018] prove for their core effect calculus, λH/L.

While their calculus does not support binary handlers and utilises a separate handling

construct, their development is more general than ours in other ways. First, λH/L sup-

ports effect polymorphism which yields a more flexible UJ − K relation, capable of

relating arbitrary expressions, rather than just syntactically identical normal forms of

ELLA’s corresponding relation. Second, λH/L supports the lift operation, previously

mentioned in Section 3.11, which extends an effect row with a specified effect label.

In contrast, ELLA does not support FRANK’s mask operation, or adaptors more gener-

ally. Finally, λH/L admits subtyping of both value and effect types; the latter is usually

called “effect subtyping” [Biernacki and Polesiuk, 2015], or “subeffecting” [Lindley

et al., 2017]). Effect subtyping and adaptors enable reasoning not possible in our cur-

rent ELLA formalism by allowing terms to appear in more permissive ambient envi-

ronments. We discuss this point further in Section 7.3.

6.5.3 Formalisation Progress

Our formalisation in AGDA of this chapter is only partially complete. Thus far we

have formalised the calculus of Figure 6.1 using the generic universe of syntaxes with

binding due to Allais et al. [2018]. Currently, ELLA terms are well-sorted, but not

well-typed. Well-sortedness ensures that terms are well-scoped and either checkable

or inferrable, by construction. We have yet to define the logical and applicative ap-

proximations in Figures 6.11 and 6.13 using FOLµ. although we conjecture their en-

codings should be close to our description in Appendix B. In contrast, the definition
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for λ→FG logical approximation is defined by a set of mutually recursive functions —

one for each of values, terms and stacks — acting on well-typed and well-scoped syn-

tax. Such a mutually recursive collection of definitions would not be permitted in the

case of ELLA since it would not satisfy the AGDA termination checker 2. The only

novel aspect is pattern matching for interpreting {C} types, in lieu of straightforward

quantification over values of the argument type.

The generic framework by Allais et al. [2018] defines a traversal over a universe

of syntaxes with binding. Then, a user of the library only has to define their calculus

using the constructors of the universe, which automatically yields various pre-defined

semantics: renaming, substitution, and their basic properties. Choosing this frame-

work is particularly fruitful if the calculus in question is in a state of flux, and subject

to change. We can alter the constructs within the language simply by altering the gram-

mar without concern for knock-on effects to syntactic traversals or fusion of semantics.

6.5.4 Handler Stacks

We have chosen to establish our results by generalising frame stacks to incorporate

handlers, and the handling of effects. Thus, we generalise typical notions of biorthog-

onality / >>-lifting from values to effectful normal forms; the approximation relation

on terms being defined by the >>-lifting of VJ − K over SJ − K.

A natural question to ask is whether all this complexity is truly needed: would

an applicative notion similar to Milner’s [1977] original, extended to account for stuck

terms, suffice? Certainly, all our programs are morally purely functional since handlers

give an interpretation to all effects within an ELLA program. In other words, ELLA

does not contain any features (e.g. local state [Koutavas et al., 2010]) which preclude

a big-step semantics-style development similar to the one we presented for λ→FG in

Section 4.2. We do not explore this alternative for a few reasons. First, we believe it

would not yield as useful reasoning principles, since ours, e.g. Lemmas 6.33 and 6.37,

fundamentally rely on biorthogonality. In particular, the ability to reason about related

handler stacks would not be possible in a big-step formulation because we would not

have the PJ − K or SJ − K relations. Their absence would impact the usefulness of

our current definition of stuck terms, UJ − K, whose main proof obligation often relies

on being able to ‘rewrite’ configurations using Lemma 6.27 and its Corollary 6.28.

2In particular, UJ [Σ]A K/, while certainly contractive, appeals to TJ [Σ]A K/ which in turn appeals
to UJ [Σ]A K/ through SJ − K.
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Hence, we would no longer be able to enclose effectful terms into larger contexts using

SJ − K to produce unit-valued pure programs, preventing us from using the simple

basic observable relation O. Second, basing our approximation relations on a big-step

semantics à la Section 4.2, or even a small-step semantics, would expose step-indexing

arithmetic in the reduction relations, e.g. Ahmed [2006], undoing our attempts to hide

their presence with the . modality. Third, it is well-known that Milner’s result does

not scale to more exotic calculi, e.g. local state [Stark, 1994; Koutavas et al., 2010].

In our setting, we would run into difficulties if state were built-in and not given an

interpetation by handlers, e.g. ML-style references in FRANK; it remains an open

question how to incorporate the algebraic account of local state [Plotkin and Power,

2002] with effect handlers. Thus, to support such extensions, we require to move to

the CIU theorem [Mason and Talcott, 1991] and define our approximation relations

using handler stacks.

Our presentation of biorthogonality is inspired by Pitts and Stark [1998] who in-

troduce frame stacks to provide a structurally inductive notion of termination (see § 3

loc. cit.). Johann et al. [2010] have employed biorthogonality using frame stacks to

prove a CIU theorem for call-by-name PCF with polymorphism and algebraic effects.

Their metatheory is parameterised by a basic observation relation on ground type com-

putations. This relation describes the particular collection of effects available and their

semantics. The operational semantics is defined by reduction of programs to compu-

tation trees as introduced by Plotkin and Power [2001] (see Example 2.5). Their work

inspired research into modal logics for behavioural equivalence where the modalities

capture observations on programs [Matache, 2018; Simpson and Voorneveld, 2018]

(see Section 6.6.2). Their context lemma result establishes that applicative contexts

(in the Milner sense) suffice for observational approximation due to their call-by-name

semantics and compositionality of their basic observation relation.

Stack-based machine semantics for algebraic effects and handlers have been pre-

sented before, e.g. the CEK-based machines [Felleisen and Friedman, 1987] by Hiller-

ström and Lindley [2016] and Biernacki et al. [2019b], being a common implemen-

tation strategy for handlers. Our work represents the first use of stacks for relational

reasoning. Additionally, our configurations are simpler in comparison to loc. cit. since

we avoid an additional stack for accumulating bypassed handlers during command for-

warding. Instead, we leverage continuation-passing style commands which store the

accumulated frames. However, some of the added complexity in the case of Biernacki

et al. is to account for effect coercions and local effects which we do not yet support
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in our formalism. Extending our results to incorporate adaptors could take inspiration

from Leijen’s [2018] ‘handler contexts’ which formalise the semantics for injecting

— Leijen’s terminology for lift/mask — an effect into a row in a concise form which

resembles our handler stacks (cf. recording the explicit nesting depth using Biernacki

et al.’s [2018] ‘n-freeness’ relation).

6.6 Related Work

We discuss the broader context of reasoning about algebraic effects and handlers that

we have not detailed so far.

6.6.1 Denotational Methods

Bauer and Pretnar [2014] present a fine-grained call-by-value calculus modelling the

core of the EFF programming language. The calculus supports subtyping to address the

poisoning problem, and effect instances to allow multiple occurrences of the same ef-

fect within a computation. Handlers are deep, distinct from functions, and may handle

operations with respect to particular instance(s).

Remark 6.55. The current version of EFF (https://www.eff-lang.org/) is slightly

different to the version in the published article by Bauer and Pretnar. In particular, the

newest versions do not support effect instances.

Bauer and Pretnar [2014] provide both a big-step and small-step operational seman-

tics for their calculus. The core calculus represents operations in continuation-passing

style which is similar to ELLA stuck terms. The authors formalise their calculus, oper-

ational semantics and type soundness in Twelf [Pfenning and Schürmann, 1999].

They construct a denotational semantics for core EFF and prove that it agrees with

the operational semantics (adequacy). The semantics require the solution of recursive

domain equations to soundly interpret computation types.

Their solution relies crucially on the minimal invariant property due to Pitts [1996]

which characterises unique, mixed (co)inductive solutions to domain equations. One

can view the . modality and contractivity as a way of achieving minimal invariance

syntactically by explicitly representing the finite approximations within a stratified de-

ductive system. Though, ‘syntactic minimal invariance’ typically refers to the tech-

nique introduced by Birkedal and Harper [1999], who prove minimality for a calculus

with a single recursive type by a series of external inductive arguments.

https://www.eff-lang.org/
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The minimal solution yields recursion and induction principles for computation

types. The recursion principle serves as the interpretation for handlers while the in-

duction principles allows one to prove properties of programs. The induction principle

admits a term decomposition lemma akin to our Lemma 6.50. Thus, in combination

with their subtyping discipline, their method can be used to validate equations of the

underlying algebraic theories of effects, which the authors demonstrate for global state.

By adequacy, denotational equivalence implies observational equivalence but the au-

thors do not prove the converse.

Kammar [2014] gives Gifford-style type- and effect-systems a general semantics

using the theory of algebraic effects by considering annotation sets as the collection of

operations which give rise to effects. Kammar develops MAIL, an extension of Levy’s

[2004] call-by-push-value to incorporate effect annotations. The general semantics is

capable of validating a number of equivalences, including the equations associated to

the theory as well as global properties of effects, e.g. discarding, copy, or swapping

effectful terms. His work does not consider handlers for algebraic effects. It would

be interesting to be able to prove the equivalences validated by Kammar’s semantic

framework in ELLA using our operational techniques. Extending Kammar’s semantic

account to incorporate ELLA or other calculi using algebraic effect handlers, would be

an interesting direction for future work. Crucially, we would need to more seriously

consider handlers which validate equations outright, since the optimisations Kammar

considers rely on the effect theory. More generally, establishing a connection to Kam-

mar’s denotational approach and our operational account is worth investigating. Like-

wise, we have yet to investigate validating examples derived from Führmann’s [2002]

effectoids.

6.6.2 Logics

Pretnar [2010] presents a first-order logic, extended with fixed-point predicates, for a

simply-typed calculus with algebraic effects and handlers. The calculus is based on

Levy’s [2004] call-by-push value. He derives various notions of program equivalence

in his logic via translations of existing program logics, but does not consider observa-

tional equivalence.

Matache [2018] establishes observational equivalence using coinductive techniques

for ECPS, a simply-typed call-by-value λ-calculus in continuation-passing style sup-

porting algebraic effects and general recursion; termination being treated as an effect
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with an explicit operation. The calculus does not track effects in the type system.

Matache develops an endogenous logic F , meaning a logical formula describes the

properties of a single computation or program but is independent of the syntax of the

programming language. This type of logic contrasts with Pretnar’s exogenous logic

(and FOLµ.) where computations form the term language of the logic. The F logic in-

duces a notion of program equivalence: F -logical equivalence which, in conjunction

with applicative bisimilarity using Howe’s method, establishes a triangulation result

for observational equivalence. Unlike our concrete contexts, Matache adopts a coin-

ductive characterisation of contexts similar to Lassen [1998b]. Matache’s investigation

is inspired by the behavioural equivalence of Simpson and Voorneveld [2018] for a

direct-style calculus, EPCF. She demonstrates an embedding of EPCF into ECPS by

CPS translation but notes the unlikelihood of an embedding in the other direction due

to ECPS being able to express control operators not expressible in EPCF.

The modal logics developed by Simpson and Voorneveld [2018] and Matache

[2018] determine notions of program equivalence where programs are considered equiv-

alent if and only if they satisfy the same set of formulas. In contrast, FOLµ. and Pret-

nar’s [2010] logic do not determine a particular notion, but allow one to reason about

multiple notions of program equivalence. However, neither logic has thus further been

mechanised in a theorem prover.

6.6.3 Bisimulations and Howe’s Method

Dal Lago et al. [2017] define applicative bisimilarity for a call-by-value computational

λ-calculus with algebraic effects given by a monadic semantics. Their approach does

not presuppose a particular collection of effects but instead is parametric with respect

to a given computational monad T . Assuming T satisfies suitable conditions, the au-

thors describe a lifting, called a relator, of a relation on a set X to a relation on T X .

Relators express (abstractly) the observable aspects of the computational effects arising

from the monad T . In this sense, it performs a similar function to the basic observable

relation used by Johann et al. [2010] in their abstract logical relations-based account.

Given a computational monad and associated relators, Dal Lago et al. can abstractly

characterise applicative bisimilarity and prove its soundness with respect to observa-

tional equivalence using Howe’s method. However, they do not prove completeness,

noting that obtaining such a result, at least for applicative bisimilarity, would impact

the range of effects captured by the technique.



156 Chapter 6. Ella

Dal Lago and Gavazzo [2019] describe normal form bisimilarity in the above ab-

stract setting, noting the improved reasoning techniques afforded by this kind of bisim-

ulation in contrast to the applicative notion. In light of our discussion in Section 6.5.4,

we conjecture a similar loss in reasoning power would be observed if we dispensed

with biorthogonality and used Milner’s [1977] original applicative notion instead.

It is an open research question to investigate a yet more general abstract theory for

characterising Morris-style [1968] observational equivalence which encapsulates both

(step-indexed) logical relations and bisimulation approaches. Hur et al. [2012] present

a sound (but not complete) method combining bisimulations and Kripke logical rela-

tions, and subsequently scale the technique to support inter-language reasoning [Neis

et al., 2015]. The approach combines the appealing aspects of the two techniques: us-

ing coinduction for recursive features (as in bisimulations) and state transition systems

for local state (as in Kripke logical relations). Thus, their approach does not require

step-indexing. A particular interesting thread to pursue would be connecting our log-

ical relations method for ELLA with the complete bisimulations for delimited-control

operators by Biernacki et al. [2019a]; taking advantage of the mutual simulation result

between handlers and delimited-control operators [Kammar et al., 2013; Bauer and

Pretnar, 2015].
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Examples

This chapter uses the techniques developed in the previous chapter to reason about

program equivalences in ELLA. In proving concrete examples in this chapter, we elide

some of the notation introduced in Chapter 6. In particular, conversions from inferrable

terms to checkable terms are usually left implicit for the sake of brevity.

7.1 Encapsulation Example

We demonstrate that ELLA handlers can abstract their implementation, encapsulating

some local state along the way. Concretely, we show that two implementations of a

counter are observationally equivalent. The act of counting is represented by the Tick

effect:

interface Tick = get : Unit -> Int

| inc : Unit -> Unit

giving the option to retrieve the current counter value or increment the counter.

A handler f for the Tick effect has the following type signature:

{C} = {Int -> <Tick >Unit -> [∅]Int}

where the handled task returns a value of type unit. Such a handler may be used in a

larger program without exposing the state to the client:

e′ = <tsk > () 7→ (rec f{e}:{C}) 0 (tsk ())

where tsk has type {〈ι〉unit→ [∆(∅)]int} 1, ∆ = ι,Tick and e is a particular imple-

mentation of the ticker handler. Given the following instantiations for e:
1We have used our syntactic sugar tsk ()≡ tsk () () from Figure 6.5 in the above code snippet. We

shall employ similar syntactic sugar throughout this chapter without further comment.

157



158 Chapter 7. Examples

Listing 7.1: e+

{ x <get -> k> 7→ f x (k x)

| x <inc -> k> 7→ f (x + 1) (k ())

| x () 7→ x}

Listing 7.2: e−

{ x <get -> k> 7→ f x (k (-x))

| x <inc -> k> 7→ f (x - 1) (k ())

| x () 7→ -x}

the goal is to prove that for corresponding definitions of e′+ and e′−:

· ` {e′+} ≈ {e′−} : [∅]{〈Tick〉unit,〈ι〉unit→ [∅]int}

We shall prove only one direction of the equivalence since the other direction is anal-

ogous. Define the atomic relation AbsV : Z,Z by the following equation:

AbsV(k1,k2), k1 ≡−k2

It suffices to show:

TJ [∆(∅)]unit K/(n1,n2),AbsV(w1,w2)  TJ [∅]int K/(↑e+ w1 n1,↑e− w2 n2) (P)

Our main result follows from Lemma 6.29 and (P) taking w1 = w2 = 0. It remains to

prove that property (P) holds.

Proof. The proof proceeds by Löb induction. Assume P holds one step later – (.P).

Using Lemma 6.33 our proof obligation simplifies to:

PJ [∆(∅)]unit [∅]int K/(Id ◦ (↑Ce+,w1�), Id ◦ (↑Ce−,w2�))

By Lemma 6.37 it suffices to check the following conditions hold:

1. TJ [∅]int K/(↑e+ w1 (),↑e− w2 ());

2. ∀c : A1 → B1 /∈ ∆, c-stuck(Id ◦ (↑Ce+,w1�)) and c-stuck(Id ◦ (↑Ce−,w2�))

3. ∀c : Ac → Bc ∈∆, .VJ Ac K/(v1,v2) and H1,H2 such that c-normal(H1,H2, [∆(∅)]unit)
then

TJ [∅]int K/(↑e+ w1 (H1 ? c v1),↑e− w2 (H2 ? c v2));

Obligation (2) is straightforward. For (1), we use Lemma 6.30 and our assumption

AbsV(w1,w2). Obligation (3) has two cases, one for each command in the Tick effect

interface:
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Case c = get.

We get the following sequence of simplifications of the goal:

.TJ [∅]int K/(↑e+ w1 (z1 w1),↑e− w2 (z2 (−w2))) By Lemma 6.30

where zi = ↑(x,() 7→ Hi@x)

⇐ .2TJ [∅]unit K/(↑e+ w1 (H1@w1),↑e− w2 (H2@(−w2))) By Lemma 6.30

⇐ .TJ [∆(∅)]unit K/(H1@w1,H2@(−w2)) By mono. and (.P)

By c-normal(H1,H2, [∆(∅)]unit) it remains to show:

.VJ int K/(w1,−w2)

which follows by definition and AbsV(w1,w2).

Case c = inc.

This case follows similar reasoning as above using Lemma 6.30 and (.P) leading

to the obligation:

AbsV(w1 +1,w2−1) = w1 +1≡−(w2−1)

⇐⇒ w1 +1≡−w2 +1

⇐⇒ w1 +1≡ w1 +1 by assumption.

7.2 Associativity of Pipe

In this section we apply our techniques to a canonical example of a multihandler called

pipe. The pipe multihandler permits communication between two computations, one

which expects to receive values and another which sends values. The handler facil-

itates the communication by passing the sent value as an argument to the receiver’s

continuation. We restate the signature for pipe given in Chapter 3:

pipe : {<Send X>Unit -> <Recv X>Y -> [Abort]Y}

where

interface Recv X = recv : X

interface Send X = send : X -> Unit

Recall the definition of pipe first introduced in Chapter 3:
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{ <send x -> s> <recv -> r> 7→ f (s ()) (r x)

| <_> y 7→ y

| unit <_> 7→ abort () }

where we have replaced pipe with f to denote a recursive call.

The definition is subtle. Ordering of the arguments matters and requires that we

take Recv to be primary; discarding any unmatched send effects.

We wish to prove that pipe is associative. That is, roughly, for appropriately typed

terms a,b and c:

pipe a (pipe b c) ⪍VSC pipe (pipe a b) c (P)

and vice versa.

We now develop the example in ELLA using the techniques from Chapter 6 to prove

an approximation result corresponding to (P) – the other direction follows analogous

reasoning.

Let e denote the previously given definition for pipe. Since ELLA does not support

value polymorphism, we restrict ourselves to a version of pipe which transfers integer

values between the two computations, eventually returning an integer on successful

completion. Furthermore, since ELLA does not support effect polymorphism we work

with a fully specified ambient ability. Given these constraints, the type signature for

pipe becomes:

{C} = {<Send >Unit -> <Recv >Int -> [∅|Abort]Int}

where

interface Recv = recv : Unit -> Int

interface Send = send : Int -> Unit

Lastly, we require two additional type signatures for the innermost invocations of

pipe because they occur in more permissive ambients than allowed by C.

{Cr} = {<Send >Unit -> <Recv >Int -> [∅|Abort ,Recv]Int}

{Cw} = {<Send >Unit -> <Recv >Unit -> [∅|Abort ,Send]Unit}

and the corresponding associativity property becomes:

· ` pipe a (pipeR b c) ⪍VSC pipe (pipeW a b) c : [Abort(∅)]int (G)

where
pipe = ↑Ce

pipeR = ↑Cre

pipeW = ↑Cwe



7.2. Associativity of Pipe 161

Intuitively, to prove (G) we need to analyse the argument computations a,b and

c, reducing the applications to a particular clause in the corresponding definitions. To

prove (G), we will leverage the triangle and simplify the terms using term decomposi-

tion and effect handling lemmas. Before proving (G), we prove some useful properties

regarding abort-stuck terms and the above pipe definition.

Lemma 7.1 (Aborting Stacks). Given handler stacks H1,H2 and Σ s.t. abort : unit→ zero ∈ Σ,

abort-stuck(H1) and abort-stuck(H2):

 UJ [Σ]A K.(H1 ?abort (),H2 ?abort ())

Proof. By definition of UJ [Σ]A K. we require to prove .VJ unit K/((),()) (trivial) and

for all · [Σ]-- w⇒ zero,

.TJ [Σ]A K.(H1@↓w,H2@↓w)

Since there are no inhabitants of zero, the result follows.

Lemma 7.2. If k ∈ Z, Σ =∅,Send, and

· [Σ]-- ua : int s.t. Σ-normal(ua)

· [Σ]-- ub : unit s.t. Σ-normal(ub)

then

TJ [Abort(∅)]int K.(pipe ua (pipeR ub k),pipe (pipeW ua ub) k)

Proof. We have,

pipe ua (pipeR ub k) ≡ Id ◦ (↑Cpipe,ua�)◦ (↑CpipeR,ub�)@k

−→ Id ◦ (↑Cpipe,ua�)@k

−→ k

For the right-hand side term, we consider the possible forms of ub.

Case ub = ().

Calculating,

pipe (pipeW ua ub) k ≡ Id ◦ (↑Cpipe,�k)◦ (↑CpipeW,ua�)@()

−→ Id ◦ (↑Cpipe,�k)@()

−→ k
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Case ub = Hb ? send wb.

Calculating,

pipe (pipeW ua ub) k ≡ Id ◦ (↑Cpipe,�k)◦ (↑CpipeW,ua�)@(Hb ? send wb)

−→ Id ◦ (↑Cpipe,�k)@((↑CpipeW,ua�)•Hb)? send wb

−→ k

In both cases, the result follows by Lemmas 6.48 and 6.47(1).

Lemma 7.3. If Σ =∅,Send, Σ′ =∅,Recv and

· [Σ]-- ua : int s.t. Σ-normal(ua)

· [Σ′]-- uc : unit s.t. Σ
′-normal(uc)

then

 TJ [Abort(∅)]int K.(pipe ua (pipeR () uc),pipe () uc)

Proof. We proceed by case analysis on uc.

Case uc = k, for some k ∈ Z.

We have,

pipe ua (pipeR () uc) ≡ Id ◦ (↑Cpipe,ua�)◦ (↑CpipeR,()�)@k

−→ Id ◦ (↑Cpipe,ua�)@k

−→ k

and

pipe () k −→ k

and the result follows by Lemmas 6.48 and 6.47(1).

Case uc = Hc ? recv ().

We have

pipe ua (pipeR () uc) ≡ Id ◦ (↑Cpipe,ua�)◦ (↑CpipeR,()�)@(Hc ? recv ())

−→ Id ◦ (↑Cpipe,ua�)@(Id ?abort ())

−→ ((↑Cpipe,ua�)• Id)?abort ()

and on the right-hand side,

pipe () (Hc ? recv ()) ≡ Id ◦ (↑Cpipe,()�)@(Hc ? recv ())

−→ Id ?abort ()
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So, by Lemma 6.48 it suffices to prove for some j > 0,

. jTJ [Abort(∅)]int K.(((↑Cpipe,ua�)• Id)?abort (), Id ?abort ())

which follows by Lemmas 6.47(2) and 7.1.

We are now in a position to prove (G).

Proof. Since both sides can be decomposed into distinct evaluation contexts plugged

with the same argument, we can prove (G) using just the applicative approximation.

Moreover, using the applicative relation simplifies the proof because we need only

consider the one normal form plugged into both sides, rather than related normal forms

as for logical approximation. Using Lemma 6.43, it suffices to show:

 ∀a,b,c.TJ [Abort(∅)]int K.(pipe a (pipeR b c),pipe (pipeW a b) c) (A)

By Löb induction, assume the goal holds one step later – (.A). We now simplify our

goal one argument at a time. Applying Lemma 6.50 followed by Lemma 6.51, we split

our goal into two subgoals:

(i) TJ [Abort(∅)]int K.(pipe () (pipeR b c),pipe (pipeW () b) c)

(ii) TJ [Abort(∅)]int K.(pipe (Ha ? send va) (pipeR b c),pipe (pipeW (Ha ? send va) b) c)

In both subgoals we apply Lemmas 6.50 and 6.51 again to analyse the argument b.

Consider subcases arising from (i).

Case b = ().

We have that

pipeW () ()−→ ()

so using Lemma 6.48 we can simplify the right-hand side term:

TJ [Abort(∅)]int K.(pipe () (pipeR () c),pipe () c)

Now both terms are in the form H@c for some H such that abort-stuck(H). So

we can apply Lemmas 6.50 and 6.51 once more to argument c. Both cases follow

by Lemma 7.3.
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Case b = Hb ? send vb.

It suffices to show:

pipe () (pipeR (Hb ? send vb) c).trm pipe (((↑CpipeW,()�)•Hb)? send vb) c

at [Abort(∅)]int.

Once more, Lemmas 6.50 and 6.51 apply since both terms form abort-stuck

handler stacks paired with c.

Case c = k, for some k ∈ Z.

By Lemma 7.2.

Case c = Hc ? recv ().

We have,

pipe () (pipeR (Hb ? send vb) (Hc ? recv ()))

≡ Id ◦ (↑Cpipe,()�)◦ (↑CpipeR,(Hb ? send vb)�)@(Hc ? recv ())

−→ Id ◦ (↑Cpipe,()�)@(pipeR ({x,() 7→ Hb@x)} ()) ({x,() 7→ Hc@x} vb))

≡ pipe () (pipeR ({x,() 7→ Hb@x)} ()) ({x,() 7→ Hc@x} vb))

−→ pipe () (pipeR (Hb@()) ({x,() 7→ Hc@x} vb))

and

pipe (((↑CpipeW,()�)•Hb)? send vb) (Hc ? recv ())

−→ pipe ({x,() 7→ ((↑CpipeW,()�)•Hb)@x} ()) ({x,() 7→ Hc@x} vb)

≡ pipe ({x,() 7→ pipeW () (Hb@x)} ()) ({x,() 7→ Hc@x} vb)

−→ pipe (pipeW () (Hb@())) ({x,() 7→ Hc@x} vb)

So the result follows by Lemma 6.48 and the Löb induction hypothesis.

Case b = Hb ? recv ().

We require to show:

pipe () (((↑CpipeR,�c)•Hb)? recv ()).trm pipe (pipeW () Hb ? recv ()) c

at [Abort(∅)]int.

We have,

pipe () (((↑CpipeR,�c)•Hb)? recv ())−→ Id ?abort ()
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and

pipe (pipeW () Hb ? recv ()) c −→ pipe (Id ?abort ()) c

= Id ◦ (↑Cpipe,�c)?abort ()

The result follows using Lemmas 6.48, 6.47(2) and 7.1.

Now consider the subcases where a = Ha ? send va.

Case b = ().

We have,

pipe (pipeW (H1 ? send v1) ()) c) −→ pipe () c

and using Lemma 6.48, our goal simplifies to:

.TJ [Abort(∅)]int K.(pipe (Ha ? send va) (pipeR () c),pipe () c)

Both terms can be decomposed into abort-stuck handler stacks acted on by the

term c. Therefore, simplify the goal using Lemmas 6.50 and 6.51. The remaining

subgoals follow from Lemma 7.3.

Case b = Hb ? send vb.

This case follows the same reasoning as the previous case for b = Hb ? send vb.

Case b = Hb[recv ()].

We have,

pipe (Ha ? send va) ((↑CpipeR,�c)•Hb ? recv ())

−→ pipe ({x,() 7→ Ha@x} ()) ({x,() 7→ ((↑CpipeR,�c)•Hb)@x} va)

−→ pipe (Ha@()) ({x,() 7→ pipeR (Hb@x) c} va) (?)

and

pipe (pipeW (Ha ? send va) (Hb ? recv ())) c

−→ pipe (pipeW ({x,() 7→ Ha@x} ()) ({x,() 7→ Hb@x} va)) c

−→ pipe (pipeW (Ha@()) ({x,() 7→ Hb@x} va)) c (�)

So by Lemma 6.48 it suffices to show (?) and (�) are related by TJ − K.. By

Lemma 6.50, we reduce our obligation to showing for some appropriate normal

form u:

.TJ− K.(pipe u ({x,() 7→ pipeR (Hb@x) c} va),pipe (pipeW u ({x,() 7→ Hb@x} va)) c)
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Both sides now reduce again using Lemma 6.48 and it remains to show:

.TJ [Abort(∅)]int K.(pipe u (pipeR (Hb@va) c),pipe (pipeW u (Hb@va) c)

which follows by the Löb induction hypothesis.

7.3 Validating Equations

We would like to be able to use our reasoning principles and approximation relations

to prove certain effect handlers satisfy the equations associated with the effect being

handled. For example, given the interpretation of state in Example 3.18, we would like

to prove that the equations in Example 2.8 are satisfied. In particular, suppose we wish

to show:

lkp ` (λs.lkp ` (λs′.M s s′)) = lkp ` (λs.M s s) (?)

We can express this equation in ELLA using our approximation relations. First, assume

we have x : int,y : int [State(∅)]-- n : A. Define the following ELLA programs:

nxy , let x : int = get () in let y : int = get () in n

nx , let x : int = get () in n[x/y]

Now, we define the state handler from Example 3.18, where State is specialised to

an integer state cell:

state : {Int -> <State >Int -> [∅|Int]}

state _ x = x

state s <get -> k> = state s (k s)

state _ <put s -> k> = state s (k unit)

By triangulation for ELLA, we are free to choose the applicative or logical notion to

express an observational approximation. We choose the applicative approximation but

our choice does not make the proof simpler in this case (cf. Section 7.2). The proof

below implicitly appeals to monotonicity of the . modality throughout. One direction

of (?) can be expressed as follows.

TJ [∅]int K.(state k nxy,state k nx) (A)

where k ∈ Z.



7.3. Validating Equations 167

Note that,
nxy ≡ (Id ◦ (x : int.n′xy))@(Id ?get ())

−→ Id ◦ (x : int.n′xy)?get ()

where n′xy = let y : int = get () in n

and
nx ≡ (Id ◦ (x : int.n[x/y]))@(Id ?get ())

−→ Id ◦ (x : int.n[x/y])?get ()

Both sides of (A) reduce by Lemma 6.48 to yield the following proof obligation:

TJ [∅]int K.(state k ({z,() 7→ H1@z} k),state k ({z,() 7→ H2@z} k))

where H1 , Id ◦ (x : int.n′xy) and H2 , Id ◦ (x : int.n[x/y]). We can reduce the right-

hand side using Lemma 6.48:

TJ [∅]int K.(state k ({z,() 7→ H1@z} k),state k (n[k/x][k/y]))

Now the right-hand side is in its final form, since we do not know anything about

the term n. Once again, we can reduce the second argument of the left-hand side to a

normal form with respect to the state handler using Lemma 6.48:

TJ [∅]int K.(state k ({z,() 7→ (Id ◦ (y : int.n[k/x]))@z} k),state k (n[k/x][k/y]))

Further application of Lemma 6.48 produces identical left- and right-hand side

terms. The result follows by reflexivity of applicative approximation.

Similar reasoning can be performed to validate the other equations for state. Addi-

tionally, by changing the stateful computations slightly we can validate the following

FRANK operator, first introduced in Section 3.6, to increment a counter:

next : {[State Int]Int}

next! = fst get! (put (get! + 1))

Roughly, the following approximation would validate the next example.

TJ [∅]int K.(state k (fst nx ny),state k (let x : int = get () in fst x (n′[x/y]))) (??)

where
nx , Id ?get ()

ny , let y : int = get () in n′

· [ΣS]-- fst⇒ 〈ι〉int→ [ΣS]B, ΣS = State(∅)

Proving (??) follows exactly the same structure as the previous proof. We provide

a brief sketch here. We start by handling the first get command on both sides. We
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can now proceed to reduce the second argument, ny, on the left-hand side only; the

right-hand side is already in the desired form. Reduction of ny involves handling the

second get command. Afterwards, both sides satisfy the form of Lemma 6.50, and we

complete the proof by reflexivity of applicative approximation.

It is comforting to know our reasoning principles are sufficient to prove some of

the equations arising from the algebraic theory of effects, as well as natural examples

arising from operator application. The above result for let bindings has also been

shown for EFF by Bauer and Pretnar [2014] using denotational equivalence induced

by their semantics. But how useful is the above result in practice? There are not too

many examples like our next operator which make consecutive calls to get with no

intermediate code between the two invocations. Unless some program transformation

were to introduce these redundancies itself, the result appears quite limited.

Based on our modification to validate the next example, we can arrive at a more

general statement which allows arbitrary code to execute in-between the two get in-

vocations provided the intermediate code does not perform any State effects. Indeed,

our nx term above was a special instance of State-free intermediate code; it returned

immediately following the get command.

Our more general statement is as follows.

state k ( f nx ny). state k (let x : int = get () in f n1 (n2[x/y]))

where
nx , let x : int = get () in n1

ny , let y : int = get () in n2

and assuming State /∈ (∆i)i=1,2, Σ1 = ∆1(∅) and ΣS = State(∅):

x : int [Σ1]-- n1 : A1

· [ΣS]-- f ⇒ 〈∆〉A→ [ΣS]B

The result for next would follow by instantiating f to fst, n1 to x, and n2 to

put (y + 1). However, there is a catch. The ambient environment in which n1 occurs,

namely the first argument to f , includes the State effect. The current ELLA formalism

does not permit effect subsumption; in particular the T-APP rule forces the operator’s

ability to match exactly with the ambient environment:

Γ [Σ]-- v⇒{〈∆〉Ak→ [Σ]B} · · · · · ·

Γ [Σ]-- v n⇒ B
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We would need to extend our type system for ELLA to support the mask adaptor. Then,

we modify the nx term to mask the State effect during the execution of n1:

nx , let x : int = get () in 〈State〉(n1)

and the approximation to prove is now:

TJ [∅]int K.(state k ( f nx ny),state k (let x : int = get () in f (〈State〉(n1)) (n2[x/y])))

Assuming we have an appropriate interpretation for adaptors, the rest of the proof

followings similar reasoning to our earlier examples in this section. The crucial step

is in replacing the first argument to f on both sides with an identical normal form

(Lemma 6.50) which relies on the fact n1 does not perform any State effects; if n1

reduces, it is either a value or a normal form with respect to f .

Of course, the devil is in the detail and our sketch does not formalism how adaptors

are interpreted by our approximation relations; even if our usage here is motivated by

subsumption concerns rather than ‘skipping’ handlers. In any case, Biernacki et al.

[2018] and Zhang and Myers [2019] demonstrate sound logical relations for reasoning

about program approximation in the presence of lift and multiple effect instances, and

we conjecture extending ELLA’s formalism to support mask and more general adaptors

would be similar. The computational content of adaptors is described by Convent

et al. [2020], which could be used as a starting point. Our frame stack formalisation

could prove to be a more natural way to express their computational content, without

requiring distinct runtime syntax for ‘frozen’ evaluation contexts.

A slightly weaker version of our more general statement, using lets instead of an

operator f , can be proven for EFF using the techniques developed by Bauer and Pretnar

[2014]. Using their notation, we may express the property as:

H [lkp () (λx1.let y1 = c1 in let y2 = c2[x1/x2] in c[x1/x2]),es]≡

H [let y1 = lkp () (λx1.c1) in let y2 = lkp () (λx2.c2) in c,es]

where c ranges over effectful computations, e ranges over pure value expressions, and

operations are written in the continuation-passing style described in Section 2.1. The

‘context’ H represents the outer state handler which receives the argument computa-

tion and the initial state es. The definition of H is analogous to the ELLA definition

provided in this section, only defined using a unary handler and parameter-passing;

we omit the details and refer to Bauer and Pretnar [2014]. We may validate the above

equivalence under the assumptions: (i) c1 binds x : int and does not perform any state
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operations; (ii) c2 binds x2 : int; and (iii) c binds y1 : A1 and y2 : A2. Thus, we can see

that this equivalence validates the ‘return’ case of our operator f , that is the case:

f , {y1 y2 7→ n}

where n corresponds to the c computation in ELLA notation.

Using effect subtyping, the authors prove commutativity of non-interfering effects

(§ 7.2 of loc. cit.). A simpler equivalence which they prove along the way suffices to

show the above equivalence:

H [lkp () (λx2.let y1 = c1 in let y2 = c2 in c),es]≡

H [let y1 = c1 in let y2 = lkp () (λx2.c2) in c,es].

The proof follows by the above equivalence in conjunction with the β rules for let.
Rather than adding adaptors, we could extend ELLA with a limited form of effect

subtyping to be able to validate this example:

T-APP

Γ [Σ]-- v⇒{〈∆〉Ak→ [Σ′]B} Σ
′ v Σ (∆i(Σ

′) = Σ
′
i)i=1...k (Γ [Σ′i]-- ni : Ai)i=1...k

Γ [Σ]-- v n⇒ B

∅v Σ

Σv Σ
′

Σ, I v Σ
′, I

However, we would miss out on the other benefits of adaptors, including encapsulation

of intermediate effects. Further work is needed to better understand the trade-offs

between effect subtyping and adaptors/coercions in this setting.
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Conclusions

8.1 Revisiting The Thesis Statement

Recall from Chapter 1 our central thesis:

There are sound (in)equational reasoning principles applicable to monomorphic

FRANK programs which are amenable to formalisation in an implementation of type

theory such as AGDA.

We have presented evidence in support of this thesis in the following ways.

We reconstructed the triangulation proof method for establishing context lemmas,

formalising it in AGDA for a simply-typed fine-grained call-by-value λ-calculus, λ→FG.

The formalisation effort provides confidence as to the correctness of our results and

serves as a basis for extensions to more exotic calculi. We reported on our fruit-

ful use of a state-of-the-art framework for handling the intricacies of syntaxes with

binding [Allais et al., 2017]. In particular, its facilities for defining meta-operations

(renamings, substitutions, etc.) generically, and the straightforward representation of

concrete contexts.

We presented ELLA, a monomorphic calculus capturing the essence of FRANK

programming with operators, generalising multihandlers and n-ary functions. We ex-

tended our triangulation method to characterise observational approximation for ELLA.

To do so, we introduced a modal logic, FOLµ., for abstracting step-index arithmetic in

proofs where steps arise from approximating recursive language features such as gen-

eral recursive functions and handlers. We proved sound reasoning principles for ELLA

using our applicative and logical approximation relations, thus substantiating our first

subsidiary thesis:

171
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Triangulation extends to characterise observational equivalence for ELLA and the

constituent relations admit a collection of sound reasoning principles

Regarding formalisation of these results for ELLA, we have made partial progress. We

presented a model for the FOLµ. logic in MLUTT, based on our AGDA formalisation.

Using FOLµ., we have mechanised an extension of our λ→FG calculus to support general

recursive functions and a proof of the fundamental property for its logical approxima-

tion; a component of the triangle. Additionally, we have formalised the ELLA calculus

using the generic framework due to Allais et al. [2018], automatically deriving the

appropriate meta-operations and their properties. However, we have yet to formalise

any of the approximation relations defined in Chapter 6, and the associated reasoning

properties. Nevertheless, we provided justification for believing such a formalisation is

possible: our approach has taken inspiration from existing modal logics and reasoning

principles which have previously been formalised for similar calculi.

Using the reasoning techniques we proved some example ELLA approximations,

including validation of standard state equations for the state handler, equivalence of

handlers, and an associativity result for a canonical multihandler, a binary pipe for

communicating processes. These examples corroborate our second subsidiary thesis:

The reasoning principles for ELLA are capable of proving concrete ELLA program

approximations.

While our collection of examples is limited, we also conjectured specific extensions to

our formalism which should lead to more general theorems, i.e. adaptors for validating

more general equations than those induced by the algebraic theory.

8.2 Future Work

We have previously hinted at potential avenues of future work throughout the disserta-

tion. We briefly describe further work to be taken with respect to FRANK, FOLµ., and

ELLA.

8.2.1 FRANK

We already discussed interesting research questions regarding our Hindler-Milner type

inference example. In particular, casting other type inference algorithms within a uni-

form interface, and considering how Atkey’s [2015] work relates to our specification
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of ‘type-inference-in-context’. Additionally, we suggested exploring incorporation of

session types to allow specification of more elaborate communication protocols.

We could investigate alternative notions of pattern matching to see if it is useful

for modelling particular problems. In particular, we could consider probabilistic or

nondeterministic matching semantics, where we dispense with the usual precedence

convention for matching clauses (cf. Figure 6.7 for ELLA). Given FRANK’s more

expressive coroutining between arguments and operator than standard call-by-value,

these alternative semantics would be nontrivial, since we could select commands from

any argument as and when they ‘arrive’. However, it is not at all clear how we would

reason about the behaviour of such handlers.

Other further directions could extend FRANK to richer type systems, incorporat-

ing a module system, or dependent types following Ahman [2017]. The former has

been studied recently by Biernacki et al. [2018] who design a ‘conventional’ ML-style

module system for HELIUM, but there is room to explore the design space a bit more

and consider where best to situate handlers: are they part of a module implementation

interpreting particular effects rendered abstract to clients (the approach taken by Bier-

nacki et al.), or are they part of a module interface whereby a module specifies up-front

the external effects upon which it relies? It is not clear these approaches are mutually

exclusive. Extending FRANK with dependent types would be a first step — albeit with

a long way still to go — towards internalising the reasoning principles outlined in this

dissertation, e.g. pairing an implementation of pipe with a proof of its associativity.

8.2.2 FOLµ.

We presented the modal logic FOLµ. as a means for encoding step-indexed logical re-

lations and their properties. Using FOLµ. helps to hide explicit step-indices in theorem

statements and most proofs. An notable exception is the need to introduce step-index

assumptions regarding monotonicity when dealing with implication. Polesiuk’s [2017]

IXFREE library defines tactics to automatically eliminate most of these introductions

such that the user of the library never has to perform explicit step-index arithmetic. We

could leverage AGDA’s new reflection library [Agda, 2019a] to define similar tactic

scripts. Comparing to LTAC tactic scripts, such AGDA-based scripts could utilise the

full expressive power of the AGDA programming language and type system. Moreover,

proof debugging is much easier since it can leverage the same interactive mode avail-

able when constructing regular programs. Kokke and Swierstra [2015] have shown
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how to develop a first-order proof search tactic, Auto, using reflection. Such a tactic

would simplify proving contractivity by automatically applying the simple rewriting

rules for the logical connectives. As always, there is a trade-off on the amount of

automation provided versus the subsequent readability of proofs.

However, tactic-based techniques may be naturally more suitable for COQ, a sys-

tem more adept at theorem proving, than AGDA, which is closer to programming.

In particular, introduction of assumptions does not work in the same way in the two

systems. In COQ, introduction adds assumptions to a context which can be manip-

ulated through tactics, allowing the user to remove unwanted hypotheses, or rename

them. In contrast, AGDA’s introduction mechanism is the dependent function space,

and renaming or removing cannot be achieved dynamically using tactics. Hence, it

seems as though recent enhancements for IRIS proof development in COQ [Krebbers

et al., 2017], may not be applicable in our setting. We should therefore investigate

programming-oriented techniques which may ease using an embedded logic.

Another direction is to generalise step-indexing in FOLµ. to Kripke worlds capable

of containing other information, e.g. heap state. Doing so would follow in the footsteps

of existing formalisations, ModuRes [Sieczkowski et al., 2015] and IRIS [Jung et al.,

2018b], both in the COQ proof assistant. It would be interesting to investigate the

challenges encountered in porting these developments to a system such as AGDA, and

whether or not libraries such as Allais et al.’s [2018] generic syntaxes framework can

be extended to support such efforts.

8.2.3 Ella

ELLA is a simply-typed fine-grained λ-calculus aiming to capture the essence of FRANK’s

distinguishing features, namely its approach to effect handlers. There is still a great

deal of further work before we arrive at a formal account of equivalence for FRANK

programs. As mentioned in Chapter 6, incorporating effect polymorphism and adaptors

should not pose any difficulties, based on a similar development for λH/L [Biernacki

et al., 2018]. In particular, for adaptors we could follow Leijen’s [2018] approach by

stratifying our frames according to whether they are regular evaluation frames, or ‘han-

dler’ frames which may be skipped during effect handling under adaptors. In contrast,

Biernacki et al. [2019b] use an explicit counter to determine the number of handlers

to skip. We are encouraged by Leijen’s approach because it accords with our intrinsic

semantics point-of-view: establish the invariants we care about by construction. Con-
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vent et al. [2020] use adaptor functions which encode the computational content of

adaptors, but they do not give an abstract machine semantics.

Other extensions such as (parametrised) algebraic datatypes and parametrised in-

terfaces would increase the usability of our formalism, and the range of examples we

could tackle.

We aim to complete of our formalisation of triangulation for ELLA in AGDA along

the lines of our ‘pen-and-paper’ formalism in this dissertation. Furthermore, we are in-

terested in formalising the example approximations in Chapter 7. Certainly, the length

of the pipe associativity proof is a potential source of difficulty; motivation for investi-

gating proof automation and search strategies in FOLµ. as mentioned above.

Looking ahead, we would like to able to reason about external resources which

are currently not captured by ELLA. Currently, FRANK provides effect interfaces for

standard input and output streams and mutable references [Convent et al., 2020]:

interface Console = inch : Char

| ouch : Char -> Unit

interface RefState = new X : X -> Ref X

| read X : Ref X -> X

| write X : Ref X -> X -> Unit

These effects are special built-in effects which are handled externally by the language

runtime. In fact, it is currently not possible to define a handler for RefState in FRANK,

instead these effects are handled by annotating the main entry point for a FRANK pro-

gram:

main : {[Console ,RefState]A}

main = · · ·

The techniques presented in this dissertation do not account for reasoning about

such external resources, e.g. read-read is equivalent to read, or inch followed by

ouch actually prints the input character. Furthermore, supporting additional external

resources such as File I/O or network resources introduces the need to ensure safe re-

source deallocation. In particular, since handlers may invoke the continuation multiple

times or even not at all, resource cleanup through regular return clauses is not appro-

priate. To support such reasoning, our formalism would need to have some way of

specifying the ‘state of the world’ [McBride, 2011], articulating the assumptions our

program makes about its execution environment.
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Resources have been considered in existing languages based on algebraic effects,

many being inspired by the coalgebraic foundations of state [Uustalu, 2015], albeit

with slightly different design considerations. Bauer and Pretnar [2015] introduced re-

sources in EFF [Bauer and Pretnar, 2014], essentially pairing some state with a default

handler. User code modifies the state through the handled operations. Notably, re-

sources are a ‘top-level’ feature, prohibiting operations to appear in their operation

clauses. Thus, this particular approach to resources distinguishes them from ordinary

handlers. Leijen [2018] extends KOKA with resources and finalisation. Finalisation

entails extending handlers with finally branch to perform any resource cleanup, e.g.

closing a file handle. Operation clauses are expected to call a finalisation procedure, if

they do not invoke the continuation, which in turn executes all the finally branches in

scope. However, the semantics do not guarantee finalisation is performed. Ahman and

Bauer [2019] introduce runners of algebraic effects, distinct from effect handlers, in

a core calculus. Runners execute computations while mediating access to a resource.

The approach is similar to Bauer and Pretnar’s by distinguishing runners from handlers.

In particular, runners do not have access to the continuation so, by design, cannot dis-

card or call the continuation multiple times, in contrast to Leijen’s approach. Thus,

they ensure linear usage of a resource within a runner’s body, whilst their denotational

semantics guarantees, under normal execution 1, resources are safely reclaimed. How-

ever, they do not consider a facility akin to Leijen’s [2018] intialisers, an additional

clause of a resource handler which encapsulates the initialisation code. Arguably, ini-

tialisation is just as important as finalisation since without proper encapsulation, a

resource may escape its finalisation code and become a dangling pointer to deallocated

memory. Consider (a slightly modified version of) their File I/O example [Ahman and

Bauer, 2019]:

let f = open "hello.txt"

in using fileIO @ f run

write "Hello , world."

finally {

return x @ fh -> close fh,

raise QuotaExceeded @ fh -> close fh,

kill IOError -> return ()

}; · · · f still in scope · · ·

1Normal execution assumes no kill signals are sent by enclosing runners. Signals indicate an
unrecoverable failure mode.
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where, as the authors themselves observe, their runner does not account for the opening

of a file resource; we have made this more explicit here by let-binding the handle

returned by open.

Runners seem like a natural way to encode concurrent actors with mailboxes, with-

out resorting to mutable references, as presented by Convent et al. [2020] as their

showpiece example leveraging adaptors. In the FRANK setting, a natural question to

consider is whether multirunners offers any advantages over the unary sort. Perhaps

more pressing is how to understand resource management in the presence of multiple

interacting continuations each executing with respect to a collection of resources, some

of which may be shared. Given the FRANK methodology of generalising function ap-

plication to more exotic forms of command-response interaction between operator and

argument, it is prudent to investigate richer structures and type systems which allow

for the safe incorporation of resource handlers into the more expressive construct.





Appendix A

Effect Pollution à la Biernacki et al.

We illustrate (in FRANK) the original effect pollution problem presented by Biernacki

et al. [2018] in λH/L.

interface Tick = tick : Unit

execTicks : Int -> <Tick >X -> Int

execTicks n <tick -> k> = execTicks (n + 1) (k unit)

execTicks n x = n

runTicks : Int -> <Tick >X -> Pair X Int

runTicks n <tick -> k> = runTicks (n + 1) (k unit)

runTicks n x = pair x n

f : {{Bool -> Bool} -> Bool}

f g = g (g tt)

fCnt : {Bool -> [Tick]Bool} -> Int

fCnt g = handleTicks 0 (f {x -> tick!; g x}) - - l e a k y !

The code above defines an effect-polymorphic function fCnt which is intended to

count the number of times the effect-polymorphic function f calls its argument func-

tion. However, as observed by Biernacki et al., under certain conditions fCnt exhibits

unexpected behaviour. In particular, if g invokes the tick command, it will be handled

by the handleTicks handler inside fCnt instead of being forwarded to the surrounding

context.
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runTicks 0 (fCnt {x -> tick!; x} =⇒ pair 4 0

Furthermore, the typing for fCnt leaks the implementation details of the counter by

offering the Tick effect to its function argument; this offer is forced by the type system

since the call to g occurs in a more permissive ambient.

The solution proposed by Biernacki et al. [2018] is to coerce the type of the ex-

pression g x to the type expected by its surrounding context and thereby allow a more

polymorphic type for g. Biernacki et al. define an operation, lift, which extends the

ability of an expression with an additional effect label. The equivalent formulation in

FRANK is mask, which restricts the ambient ability by removing an interface instance.

These two notions are equivalent in their outcome, the difference arising due to FRANK

being based on a bidirectional type system where effects are pushed inwards, whereas

λH/L is based on Hindley-Milner type inference where effects flow outwards. Thus,

to achieve the type {Bool -> [ε]Bool} for g, we remove (i.e. mask) the Tick effect

from the ambient ability when calling g.

fCntAdp : {Bool -> Bool} -> Int

fCntAdp g = handleTicks 0 (f {x -> tick!; <Tick > (g x)})

FRANK supports masking through general ability rewiring afforded by adaptors (Sec-

tion 3.12). In the example above, we wrap the call to g with an adaptor to achieve the

desired typing and behaviour:

runTicks 0 (fCntAdp {x -> tick!; x} =⇒ pair 2 2



Appendix B

Contractivity of ELLA Logical

Approximation

This appendix presents a proof of contractivity for ELLA logical approximation, hence

by Theorem 5.10 the relation has a (unique) fixed point given by the fixed-point pred-

icate in FOLµ.. Recall the definition of ELLA logical approximation reproduced here

in Figure B.1. These component relations are implicitly defined using the fixed-point

predicate construct of FOLµ.. To arrive at these definitions, we must consider the con-

tractive functions which give rise to them. That is, we unfold the recursive calls by

providing an explicit argument representing the fixed point of the relation being de-

fined. Additionally, we inline the value case of UJ − K so that appeals to UJ − K only

consider stuck terms. Folding the value case into UJ− K was for conciseness only, and

does not represent a recursive occurrence using the predicate variable; justifying the

absence of the . modality in that case.

In the following we identify the codes within the universe S with their underlying

interpretation in Set using J−K. For ELLA the universe of codes consists of the codes

corresponding to the phrase classes in Figure 6.1, and the standard constructions for

dependent product and sum types. For simplicity, we assume we are dealing with

closed terms; extending to open terms is straightforward but requires additional indices

on codes to track the scope of terms.

Define the following relations on well-typed values and terms.

VRel : Set1

VRel , Pred (ΠA : Ty .Val A×Val A)

TRel : Set1

TRel , Pred (ΠA : Ty,Σ : Ab.Trm↓ A Σ×Trm↓ A Σ)

181



182 Appendix B. Contractivity of ELLA Logical Approximation

Component Relations

VJ τ K/(v1,v2) , v1 ≡ v2

VJ {C} K/(↑e1,↑e2) , ∀u1,u2,n1.
∧

i(UJ [∆i(Σ)]Ai K/(u1,i,u2,i))∧ e′1 : 〈∆〉A←− u1 --[Σ] n1 =⇒
∃n2. e′2 : 〈∆〉A←− u2 --[Σ] n2∧.TJ [Σ]B K/(n1,n2)

where C = 〈∆〉A→ [Σ]B, e′i = unfold(ei), i = 1,2

TJ [Σ]A K/(n1,n2) , ∀H1,H2.SJ [Σ]A K/(H1,H2) =⇒ O(〈H1,n1〉,〈H2,n2〉)

SJ [Σ]A K/(H1,H2) , ∀u1,u2.UJ [Σ]A K/(u1,u2) =⇒ O(〈H1,u1〉,〈H2,u2〉)

UJ [Σ]A K/(↓v1,↓v2) , VJ A K/(v1,v2)

UJ [Σ]A K/(u1,u2) , c : Ac→ Bc ∈ Σ ∧ (c-stuck(Hi))i=1,2∧.VJ Ac K/(v1,v2)∧
∀w1,w2. .VJ Bc K/(w1,w2) =⇒ .TJ [Σ]A K/(H1@↓w1,H2@↓w2)

where ui = Hi ? c vi, i = 1,2

GJ Γ K/(θ1,θ2) , ∀(x : A) ∈ Γ. VJ A K/(θ1(x),θ2(x))

Logical Relation

Γ ` n1 /trm n2 : [Σ]A , θ1,θ2 : Γ � · GJ Γ K/(θ1,θ2) =⇒ TJ [Σ]A K/(θ1(n1),θ2(n2))

and similar for /val,/n f ,/stk

Γ ` n1 ≈ n2 : [Σ]A , Γ ` n1 / n2 : [Σ]A×Γ ` n2 / n1 : [Σ]A

Figure B.1: ELLA Logical Approximation
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We begin by defining the predicate for UJ − K/, Uπ, which has the following

signature.

Uπ : VRel→ TRel→ Pred(ΠA : Ty,Σ : Ab.NF A Σ×NF A Σ)

Note that the signature for Uπ specifies returning a relation over NF terms which

captures both stuck terms and values. This is an abuse of notation: the actual relation

will carve out only the stuck terms such that Uπ is not defined for value normal forms.

Indeed, Uπ is defined by:

Uπ ρV ρT A Σ (H1 ? c v1,H2 ? c v2) ,
c : Ac→ Bc ∈ Σ ∧ (c-stuck(Hi))i=1,2 ∧ .ρV Ac (v1,v2) ∧
∀w1,w2. .ρV Bc (w1,w2) =⇒ .ρT A Σ (H1@↓w1,H2@↓w2)

Note that the use of the predicate value and term variables appear under the later

modality. Whilst Definition 5.8 and Example 5.9 state contractivity in terms of func-

tions of the form Pred S → Pred S , we can derive analogous results even when the

domain of the predicate variable differs from the domain of the relation being defined,

as is the case in the next lemma.

Lemma B.1. The Uπ function is contractive with respect to ρV and ρT. That is, for all

πv,π
′
v : VRel, and πt ,π

′
t : TRel,

.(πv ∼ π
′
v),.(πt ∼ π

′
t)  Uπ πv πt ∼ Uπ π

′
v π
′
t .

The signature for the predicate defining stack approximation is:

Sπ : VRel→ TRel→ Pred(ΠA : Ty,Σ : Ab.Stk A Σ unit ∅×Stk A Σ unit ∅)

and is defined by:

Sπ ρV ρT A Σ (H1,H2),
(∀v1,v2.ρV A Σ (v1,v2) =⇒ O(〈H1,v1〉,〈H2,v2〉)) ∧
(∀u1,u2.Uπ ρV ρT A Σ (u1,u2) =⇒ O(〈H1,u1〉,〈H2,u2〉))

where O is the basic observation relation defined in Section 6.3.1. Given this definition,

we can see that Sπ is contractive in ρT, but it is non-expansive in ρV.

Definition B.2. Given an OFE 〈A,<,X ,∼〉 a function f : X → X is non-expansive if

for every x,y ∈ X and a ∈ A we have

x∼a y =⇒ f (x)∼a f (y).
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In other words, for a predicate to be non-expansive, the relations substituted for

the predicate variable ρV must be approximate at the current index, a stronger require-

ment than contractivity. The value case for Sπ aligns with our definition of SJ − K

in Figure B.1 where we draw values from VJ − K without decorating it with the later

modality.

Lemma B.3. For all πv,π
′
v : VRel, and πt ,π

′
t : TRel,

πv ∼ π
′
v,.(πt ∼ π

′
t)  Sπ πv πt ∼ Sπ π

′
v π
′
t .

The signature and definition for logical term approximation follows the same pat-

tern as for unfolding the stack approximation.

Tπ : VRel→ TRel→ TRel

Tπ ρV ρT A Σ (n1,n2) , ∀H1,H2.Sπ ρV ρT A Σ (H1,H2) =⇒ O(〈H1,n1〉,〈H2,n2〉)
Lemma B.4. Term approximation, Tπ, is contractive (non-expansive) in ρT (ρV):

πv ∼ π
′
v,.(πt ∼ π

′
t)  Tπ πv πt ∼ Tπ π

′
v π
′
t .

We are now in a position to define our first fixed-point predicates for stacks, terms

and normal forms. By Lemma B.4 and Theorem 5.10, it follows that Tπ has a fixed

point given by Definition 5.16. Hence,

TJ [Σ]A K/π ρV , (µρT.Tπ ρV) A Σ

We have yet to define the value relation so this definition still accepts an additional

argument for that relation. The subscript π is used to indicate this is another interme-

diate definition. The relations Uπ and Sπ can now be specialised to use the above term

approximation.

SJ [Σ]A K/π ρV , Sπ ρV (TJ − K/π ρV) A Σ

UJ [Σ]A K/π ρV , Uπ ρV (TJ − K/π ρV) A Σ

Now we define the value approximation relation. As in Figure B.1, we define the

FOLµ. recursive predicate by primitive recursion on the type A of values being related.

Vπ : VRel→ VRel

Vπ ρV τ (v1,v2) , v1 ≡ v2

Vπ ρV {C} (↑e1,↑e2) , (∀v1,v2,n1.
∧

i(Vπ ρV Ai (v1,i,v2,i))∧ e′1 : 〈∆〉A←− v1 --[Σ] n1 =⇒
∃n2. e′2 : 〈∆〉A←− v2 --[Σ] n2∧.TJ [Σ]B K/π ρV (n1,n2))

∧
(∀u1,u2,n1.

∧
i(UJ [∆i(Σ)]Ai K/π ρV (u1,i,u2,i))∧ e′1 : 〈∆〉A←− u1 --[Σ] n1 =⇒

∃n2. e′2 : 〈∆〉A←− u2 --[Σ] n2∧.TJ [Σ]B K/π ρV (n1,n2))

where C = 〈∆〉A→ [Σ]B, e′i = unfold(ei), i = 1,2
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Observe that — for the thunk case — we have once again inlined the value case

for normal forms, taking advantage of the fact that we are defining Vπ by primitive

recursion, we can inspect related arguments directly, without requiring to place it under

the later modality. Intuitively, we wrap calls to TJ − K/π in a later because we have β-

reduced our operators. The technical reason for doing so is to make Vπ contractive

with respect to ρV, since Tπ (hence TJ − K/π ) is only non-expansive.

Lemma B.5. TJ − K/π is non-expansive in ρV:

πv ∼ π
′
v  TJ − K/π πv ∼ TJ − K/π π

′
v.

Proof. By Löb induction using UNROLL (Section 5.2) and Lemma B.4.

Lemma B.6. Vπ is contractive with respect to ρV:

.(πv ∼ π
′
v)  Vπ πv ∼ Vπ π

′
v.

Proof. By induction on the type of values being related, using Lemmas B.5, B.3

and B.1.

We can now tie the mutual recursive definitions together by defining the fixed-point

predicate for value approximation:

VJ A K/ , (µρV.Vπ) A

The final versions of our other approximation relations are now definable:

TJ [Σ]A K/ , TJ [Σ]A K/π (VJ − K/)

SJ [Σ]A K/ , SJ [Σ]A K/π (VJ − K/)

UJ [Σ]A K/ , UJ [Σ]A K/π (VJ − K/)

This completes the formal definition of our ELLA logical approximation relations

within the FOLµ. logic.
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